
ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron

Synthesis of benzoindologuinolizines via a Cu(I)-mediated C-N bond formation

Rattana Worayuthakarn ^a, Prattya Nealmongkol ^b, Somsak Ruchirawat ^{a,b}, Nopporn Thasana ^{a,b,*}

ARTICLE INFO

Article history: Received 12 October 2011 Received in revised form 10 January 2012 Accepted 31 January 2012 Available online 4 February 2012

Keywords: Benzoquinolizines Benzoindoloquinolizines Copper-mediated reaction Pd(II)-catalyzed reaction Deamination

ABSTRACT

An effective synthesis of the multi ring-fused benzoindoloquinolizines has been accomplished by Cu(I)-mediated and MW-assisted C-N_{amide} bond formation of benzo[a]quinolizin-4-ones. The deamination of tetrahydro-2*H*-pyrido[2,1-a]isoquinolines was also studied and was found to give benzoquinolizines. The benzo[a]quinolizin-4-ones were prepared based on the annulations of C-1 substituted 3,4-dihydroisoquinolines and azlactones.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The benzo[a]quinolizine ring system **1** is an important heterocyclic framework that can be found in numerous biologically active compounds¹ including alangiumkaloid A **2**, an oxoprotoberberine alkaloid, and isoalangioside **3**, isolated from a Thai folk medicinal plant, *Alangium salviifolium*.^{2,3} Schulzeine A **4** and its analogues Schulzeines B–C, new α -glucosidase inhibitors, isolated from the marine sponge *Penares schulzei*, were the first three benzo[a]quinolizin-4-ones containing an amide moiety at the C-3 position.⁴ The synthetic benzo[a]chinolizinone (Ro 41-3696) **5** was reported as an effective non-sedative hypnotic for the induction and maintenance of sleep.⁵ 2-Amidobenzo[a]quinolizine **6** was synthesized as a novel dipeptidyl peptidase IV (DPP-IV) inhibitors (Fig. 1).⁶

The classical approaches for the synthesis of the benzo[a]quinolizine ring system involved the Dieckmann condensation of 1,2-dialkylesters of dihydroisoquinolines, the Bischler–Napieralski cyclization of arylethylpyridinones, and the reaction of 3,4-dihydroisoquinolines with α , β -unsaturated ketones. Other new methods have been reported in the literature. We have also reported a facile and direct synthetic entry to tricyclic imidazoloisoquinolinones and benzo[a]quinolizin-4-ones based on the annulations of 1-unsubstituted and 1-substituted dihydroisoquinolines 7 with azlactones 8 under neutral conditions.

^{*} Corresponding author. Tel.: $+66\ 2\ 574\ 0622$; fax: $+66\ 2\ 574\ 2027$; e-mail address: nopporn@cri.or.th (N. Thasana).

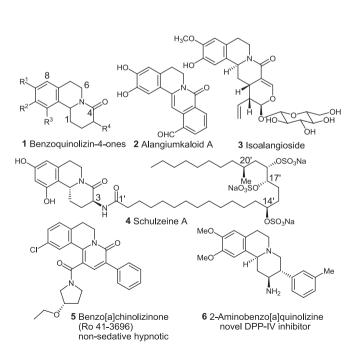


Fig. 1. Example of natural product alkaloids and biologically synthetic compounds containing benzoquinolizine system.

^a Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Kamphaeng Phet 6, Bangkok 10210, Thailand

^b Chemical Biology Program, Center for Environmental Health, Toxicology and Management of Chemicals, Chulabhorn Graduate Institute, Kamphaeng Phet 6, Bangkok 10210, Thailand

In continuation of our interests in the palladium- and coppermediated formation of O- and N-aryl bonds 10,11 in general and particularly the C-N bond formation of indole alkaloids, 12 we have studied, in this work, the Pd(II)-catalyzed and Cu(I)-mediated C-N_{amide} bond formations of tetrahydro-2H-pyrido[2,1-a]isoquinolines $\bf 9$ and benzo[a]quinolizin-a-ones $\bf 11$ in order to obtain the multi ring-fused benzoindoloquinolizines $\bf 10$ as shown in Scheme $\bf 1$.

Scheme 1. Synthesis of multi ring-fused benzoindoloquinolizinone.

2. Results and discussion

2.1. Synthesis of tetrahydro-2H-pyrido[2,1-a]isoquinolines 9

The reaction of azlactones 8 with various 1-substituted 3,4dihydroisoquinolines 7 in refluxing acetonitrile gave the corresponding 3,4-dihydropyridin-2(1H)-ones as a mixture of cis/trans tetrahydro-2*H*-pyrido[2,1-*a*]isoquinolines **9** in moderate to good yields as shown in Table 1. It was found that when the substituent R³ on the azlactones **8** was a phenyl group, the corresponding products 9 were obtained in higher yields than in the cases where R³ was a methyl group. In the cases where the substituent R¹ on the 3,4-dihydroisoquinolines 7 was a proton (R^1 =H) the *cis*-products predominated, however, increasing the steric bulk of the substituents where R¹=CH₃ and Ph derivatives, the trans isomers became the major products. The cyclocondensation of azlactones 8 (R³=CH₃) with hindered 1-benzyl-3,4-dihydroisoquinolines **7** $(R^1=Ph, 3,4-(OCH_3)_2C_6H_3)$ gave cyclocondensation products **9** in poor yield (entries 5-7 and 9-11). However, the yields could be improved with longer reaction times.

The structure of *cis*-tetrahydro-2*H*-pyrido[2,1-*a*]isoquinolines **9a** was assigned by interpretation of spectral data. The IR spectrum exhibited absorptions at 1683 and 1654 cm⁻¹ indicating the presence of two amide carbonyl groups, which corresponded to two peaks of carbonyl groups in the ¹³C NMR spectrum at δ 165.3 and 170.0. In addition, the IR spectrum exhibited a secondary amide absorption at 3396 cm⁻¹. The ¹H NMR showed a coupling constant of 7.6 Hz for *H*-2 and *H*-3 inferring the cis-relationship. ¹H NMR of the *trans*-**9a** exhibited trans-relationship of *H*-2 and *H*-3 with larger coupling constant of 13.4 Hz.

The 1 H NMR chemical shift assignment for cis- $\mathbf{9a}$ was confirmed by a detailed observation of NOE effects (Fig. 2). In particular, irradiation at the frequency of the signal at δ 5.06 (H-3) enhanced the signal at δ 4.40 (H-2, 9%) and δ 6.84 (NH, 3%). In addition, irradiation at the frequency of the signal at δ 4.40 (H-2) enhanced the signal at δ 6.02 (H-1, 4%), thus confirming the chemical shifts and the stereochemical assignment between H-3 and H-2 as having a cisrelationship. Similarly, the 1 H NMR chemical shift assignment for

Table 1Synthesis of tetrahydro-2*H*-pyrido[2,1-*a*]isoquinolines **9**^a

Entry	X	R^1	R^2	\mathbb{R}^3	Yield % 9 ^b (cis/trans)
1	Н	Н	Н	Ph	a 89 (74:26)
2	Н	Н	OCH_3	Ph	b 79 (84:16)
3	Н	CH ₃	OCH_3	CH_3	c 65 (40:60)
4	Н	CH ₃	OCH_3	Ph	d 86 (40:60)
5	Н	Ph	Н	CH_3	e 42 (17:83)
6	Н	Ph	OCH_3	CH_3	f 35 ^c (0:100)
7	Н	Ph	OCH_2O	CH_3	g 45 ^d (20:80)
8	Н	Ph	OCH_3	Ph	h 80 (36:64)
9	Н	$3,4-(OMe)_2Ph$	Н	CH_3	i 34 (27:73)
10	Н	3,4-(OMe) ₂ Ph	OCH_3	CH_3	j 45 ^e (16:84)
11	Н	3,4-(OMe) ₂ Ph	OCH_2O	CH_3	k 39 ^f (15:85)
12	Н	3,4-(OMe) ₂ Ph	Н	Ph	1 86 (35:65)
13	Н	3,4-(OMe) ₂ Ph	OCH_3	Ph	m 85 (32:68)
14	Н	3,4-(OMe) ₂ Ph	OCH_2O	Ph	n 84 (38:62)
15	Br	Н	Н	Ph	o 98 (78:22)
16	Br	Н	OCH_3	Ph	p 80 (76:24)
17	Br	CH ₃	Н	Ph	q 70 (71:29)
18	Br	CH ₃	OCH_3	Ph	r 77 (56:44)

- ^a All reaction times were 2 h.
- b Isolated yields of pure product after PTLC on silica.
- ^c Reaction time was 7 h, **9f**, 41% (17:83).
- ^d Reaction time was 7 h, **9g**, 68% (18:82).
- e Reaction time was 12 h, **9j**, 62% (21:79).
- f Reaction time was 12 h, **9k**, 80% (19:81).

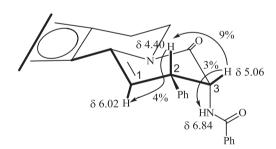


Fig. 2. NOEs effects observed for cis-9a (CDCl₃, 400 MHz).

trans-**9a** was confirmed by a detailed observation of NOE effects. It was found that irradiation of the signal at δ 5.16 (H-3) did not enhance the signal at δ 4.04 (H-2), thus confirming the stereochemical assignment between H-2 and H-3 as having a trans-relationship.

2.2. Survey of C—N bond formation of tetrahydro-2*H*-pyrido [2,1-*a*]isoquinolines 9

Various approaches for the synthesis of indole ring systems have been reported in the literature.^{12a,13} We sought to develop the synthesis of benzoindoloquinolizines **10** via the C–N bond formation of the corresponding tetrahydro-2*H*-pyrido[2,1-*a*]isoquinolines **9**. Initially, our approach to synthesize the indole ring was inspired by the recent findings of palladium-catalyzed C–H activation/C–N bond formation.^{13,14} First, we examined the possibility of C–H activation of tetrahydro-2*H*-pyrido[2,1-*a*]isoquinoline **9a** using Pd(OCOCF₃)₂ as the catalyst in the presence of Cu(OAc)₂ and AgOCOCF₃ as reoxidant at 80–85 °C under an argon atmosphere in

Download English Version:

https://daneshyari.com/en/article/5220966

Download Persian Version:

https://daneshyari.com/article/5220966

<u>Daneshyari.com</u>