ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A new procedure for the preparation of 2-vinylindoles and their [4+2] cycloaddition reaction

Yaseen Ali Mosa Mohamed, Fuyuhiko Inagaki, Ryohei Takahashi, Chisato Mukai*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

ARTICLE INFO

Article history: Received 30 April 2011 Received in revised form 16 May 2011 Accepted 17 May 2011 Available online 25 May 2011

Keywords: Allenes S_N2' reaction 2-Vinylindoles Diels—Alder reaction

ABSTRACT

A new approach for the synthesis of 2-vinylindole derivatives by 5-exo mode cyclization of 2-(3-silyloxymethylallenyl)anilines was developed. The starting allenylanilines were easily prepared by the Stille coupling of o-iodoaniline and allenylstannanes. The formed 2-vinylindole derivatives were transformed into several carbazole derivatives via the [4+2] cycloaddition reaction with suitable dienophiles.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In our previous studies, we developed a new procedure for the generation of the reactive indole-2,3-quinodimethane intermediates ${\bf 2}$ from the allenylanilines ${\bf 1}$ via the S_N2' -type reaction in the 5-endotype manner (Fig. 1). This method was entirely different from the well-known ones that took advantage of the 1,4-elimination-type or related reactions of the 2,3-disubstituted indole derivatives. The indole-2,3-quinodimethane intermediates ${\bf 2}$ were successively captured by several dienophiles in the same reaction vessel to afford the tetrahydro- and dihydrocarbazole derivatives ${\bf 3}$.

We envisaged that the similar S_N2' -type reaction of allenylanilines **4** via the 5-*exo* mode ring-closing reaction would furnish the 2-vinylindole derivatives **5**, which are known to be a useful component for the syntheses of some drugs⁴ and natural products. We now describe a new entry for the preparation of 2-vinylindole frameworks and their [4+2] cycloaddition leading to an alternative method for the construction of the carbazole derivatives **6**.

2. Results and discussion

At the beginning of this project, the Stille coupling reaction⁶ of the *N*-(*tert*-butoxycarbonyl)-2-iodoaniline (**7**) and 3-(*tert*-butyldimethylsilyloxymethyl)-1-(tributylstannyl)allene derivatives **8** was conducted for the preparation of the *N*-(*tert*-butoxycarbonyl)-2-{3-

dienophiles

Fig. 1. Formation of carbazole derivatives based on S_N2' cyclization and Diels—Alder reaction

(*tert*-butyldimethylsilyloxymethyl)allenyl} aniline derivatives **9**. According to a previous procedure, ^{1,7} **7** was treated with allenylstannane $\mathbf{8a}^8$ in DMF in the presence of 3 mol % of Pd₂(dba)₃, tri-2-furylphosphine (TFP, 24 mol %), and Cul (10 mol %) at room temperature for 2 h to produce the allenylaniline derivative $\mathbf{9a}$ in 79% yield (Table 1, entry 1). Other allenylstannanes $\mathbf{8b-d}$ (\mathbf{R}^1 =Me, Et, CH₂OBn: \mathbf{R}^2 =H) gave the corresponding allenylanilines $\mathbf{9b-d}$ in good yields (entries 2–4). The tetrasubstituted derivatives $\mathbf{9e,f}$ (\mathbf{R}^1 =CH₂OBn: \mathbf{R}^2 =Bu, (CH₂)₄OPMB) were produced in moderate yields from **7** and the tetrasubstituted allenylstannanes $\mathbf{8e,f}$ (entries 5 and 6).

^{*} Corresponding author. Tel.: +81 76 234 4411; fax: +81 76 234 4410; e-mail address: cmukai@kenroku.kanazawa-u.ac.jp (C. Mukai).

Table 1Stille coupling of *o*-iodoaniline **7** and allenylstannanes **8**

Entry	Allene	R ¹	R ²	Time (h)	Product	Yield (%)
1	8a	Н	Н	2	9a	79
2	8b	Me	Н	3	9b	90
3	8c	Et	Н	5	9c	78
4	8d	CH ₂ OBn	Н	4	9d	88
5	8e	CH_2OBn	Bu	12	9e	49
6 ^a	8f	CH ₂ OBn	(CH ₂) ₄ OPMB	6	9f	50

^a The reaction was heated at 70 °C.

With the required allenylanilines **9** in hand, the ring-closing reaction for the construction of 2-vinylindole derivatives **11** was examined (Scheme 1). After removing the TBS group of the 1,3-disubstituted allene derivative **9a** with TBAF in THF at 0 °C, the resulting **10a** (83%) was successfully converted into *N*-(*tert*-butoxycarbonyl)-2-vinylindole (**11a**) in 73% yield by ethoxycarbonylation followed by TBAF treatment. The 1,1,3-trisubstituted allene derivatives **9b** and **9c** having a methyl or ethyl group on the vinyl position also provided the corresponding 2-vinylindole derivatives **11b** and **11c** in good yields. TBAF treatment of the 1,1,3-trisubstituted allene derivative **9d** directly and unexpectedly produced the 2-vinylindole derivative **11d** in 79% yield. This was in sharp contrast to the cases in which the desilylated products **10a**–**c** were obtained upon exposure of **9a**–**c** to TBAF.

Scheme 1. Formation of 2-vinylindoles 11

Based on the direct conversion of the allenvlaniline 9d to 2vinylindole 11d, we reinvestigated the one-step conversion of allenylanilines 9 into 11 (Table 2). Treatment of the allenylaniline 9a with TBAF in THF at room temperature (not at 0 °C) afforded the desired 2-vinylindole derivative **11a** in 83% yield (entry 1).⁹ At a higher temperature (45 °C), N-(tert-butoxycarbonyl)-2-(2-hydroxy-1-alkylethyl)indole derivatives 12b,c were obtained instead of 11b,c (entries 2 and 3). On the other hand, the tetrasubstituted allene derivatives **9e.f** were converted to the desired 2-vinyl-3-substituted indole derivatives 11e (62%) and 11f (73%) at 0 °C (entries 4 and 5). K2CO3 was used as a base for the formation of the indole derivatives from the allenylanilines in previous papers.^{1,7} Thus, K₂CO₃ was again found to be a suitable base for the transformation of the allenylanilines **9b,c** to 2-vinylindoles 11b,c. In fact, 11b,c were obtained in satisfactory yields when 9b,c were reacted with K2CO3 in DMF at rather higher reaction temperatures (85–110 °C)(entries 6–8).¹⁰

Table 2 $S_N 2'$ cyclization of 2-(4-silyloxybuta-1,2-dienyl)anilines **9**

Entry	Substrate	R ¹	R ²	Base	Solvent	Temp (°C)	Time (h)	Product (%)
1	9a	Н	Н	TBAF	THF	rt	0.2	11a (83)
2	9b	Me	Н	TBAF	THF	45	5	12b (50)
3	9c	Et	Н	TBAF	THF	45	5	12c (45)
4	9e	CH_2OBn	Bu	TBAF	THF	0	0.5	11e (62)
5	9f	CH_2OBn	(CH)2OPMB	TBAF	THF	0	0.5	11f (73)
6	9b	Me	Н	K_2CO_3	DMF	110	4	11b (66)
7	9b	Me	Н	K ₂ CO ₃ / Et ₂ CO ₃	DMF	85	4	11b (80)
8	9c	Et	Н	K ₂ CO ₃ / Et ₂ CO ₃	DMF	95	5	11c (85)

By taking the [4+2] cycloaddition reaction of the 2-vinylindoles, in particular the compounds having a substituent on the vinyl position ($R \neq H$), into account, we tried to remove a Boc group on the nitrogen atom of the indole nucleus, which should be predicted to disturb the planarity due to the nonbonding interaction with an R group. Treatment of 2-vinylindole **11b** (R=Me) with TFA in $CH_2Cl_2^{11}$ at room temperature afforded 1,1-dimethyloxazolo[3,4-a]indol-3(1H)-one (**14b**) in 76% yield (Table 3, entry 1). Similar results were observed under other acidic conditions (HCl in AcOEt, ^{11,12} and TMSCl, NaI in CH_3CN , ¹³ entries 2 and 3). In contrast to these acidic conditions, exposure to KOH in MeOH at 70 °C gave the desired 2-vinylindole derivatives **13b**–**d** in moderate to high yields (entries 4–6).

Table 3Deprotection of A/-Boc group of 2-vinylindoles **11**

Entry	Substrate	R	Additive	Solv.	Temp	Time (h)	Product (%)
1	11b	Me	TFA	CH ₂ CI ₂	rt	1	14b (76)
2	11b	Me	HCI	AcOEt	rt	6	14b (45)
3	11b	Me	TMSCI, Nal	CH ₃ CN	rt	0.5	14b (85)
4	11b	Me	KOH	MeOH	70 °C	5	13b (92)
5	11c	Et	KOH	MeOH	70 °C	5	13c (56)
6	11d	CH_2OBn	KOH	MeOH	70 °C	5	13d (83)

The experimental results summarized in Tables 2 and 3 revealed that the one-step conversion of **9** into **11** required basic conditions, and a Boc group of **11** could also be removed by the base treatment. Thus, the direct one-step transformation of **9** into **13** would be attainable under proper basic conditions. After screening several basic conditions, we finally established the following conditions that treatment of **9a**–**d** with KOH in DMSO at room temperature producing the desired **13a**–**d** in satisfactory yields as expected (Table 4, entries 1–4).

Table 4 Formation of 2-vinylindoles **13**

Entry	Substrate	R	Time (h)	Product (%)
1	9a	Н	0.25	13a (76)
2	9b	Me	6	13b (73)
3	9c	Et	6	13c (75)
4	9d	CH ₂ OBn	10	13d (90)

Download English Version:

https://daneshyari.com/en/article/5220979

Download Persian Version:

https://daneshyari.com/article/5220979

Daneshyari.com