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a b s t r a c t

The maximum principle is one of the most important properties of solutions of partial dif-
ferential equations. Its numerical analog, the discrete maximum principle (DMP), is one of
the most difficult properties to achieve in numerical methods, especially when the compu-
tational mesh is distorted to adapt and conform to the physical domain or the problem
coefficients are highly heterogeneous and anisotropic. Violation of the DMP may lead to
numerical instabilities such as oscillations and to unphysical solutions such as heat flow
from a cold material to a hot one. In this work, we investigate sufficient conditions to
ensure the monotonicity of the mimetic finite difference (MFD) method on two- and
three-dimensional meshes. These conditions result in a set of general inequalities for the
elements of the mass matrix of every mesh element. Efficient solutions are devised for
meshes consisting of simplexes, parallelograms and parallelepipeds, and orthogonal locally
refined elements as those used in the AMR methodology. On simplicial meshes, it turns out
that the MFD method coincides with the mixed-hybrid finite element methods based on
the low-order Raviart–Thomas vector space. Thus, in this case we recover the well-
established conventional angle conditions of such approximations. Instead, in the other
cases a suitable design of the MFD method allows us to formulate a monotone discretiza-
tion for which the existence of a DMP can be theoretically proved. Moreover, on meshes of
parallelograms we establish a connection with a similar monotonicity condition proposed
for the Multi-Point Flux Approximation (MPFA) methods. Numerical experiments confirm
the effectiveness of the considered monotonicity conditions.

Published by Elsevier Inc.

1. Introduction

The existence of a maximum principle is a fundamental property of the solutions of the elliptic problems [29,31]. Let p be
the solution of the elliptic problem L(p) = f posed in an open domain X, where L(�) is a general second-order elliptic operator
and f the source term. Suppose that the source term is nonnegative, f P 0, and that the coefficients of L are regular enough.
Then p has no minimum in X. More precisely, if there exists a point x0 2X such that p(x0) P p(x) for all other x 2X, then p is
constant in X. This version of the maximum principle is known as Hopf’s lemma [31] and proved under the condition that the
diffusion tensor is continuously differentiable.
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The possibility of reproducing this property for the approximation of an elliptic problem, thus ensuring a discrete maxi-
mum principle (DMP) for the numerical solution, is of major importance in the development of numerical methods that are
robust and accurate. As pointed out in [46], this property may be crucial for the numerical solution of complex engineering
applications, e.g., multiphase flow problems in heterogeneous porous media with anisotropic diffusivity. In a multiphase
flow some variables (e.g., saturations) are solutions of hyperbolic equations, while the pressure is the solution of an elliptic
equation. Phase transitions are pressure dependent and may be seriously affected by spurious effects like numerical oscil-
lations in the pressure field. For example, if the approximate value of the pressure lies below the bubble-point curve of
the mixture, while the actual pressure lies above it, artificial gas may be liberated, yielding a numerical solution that is
strongly divergent with the true solution of the model.

A huge amount of works in the literature concerning finite volumes and finite elements of linear and nonlinear parabolic
and elliptic partial differential equations investigate the issue of reproducing at the discrete level this fundamental property of
the exact solutions. Among the most recent work, we mention [16,19,28,35,36,52]. It turns out that classical finite volume and
finite element schemes may fail to satisfy a DMP for strong anisotropic diffusion tensors and/or distorted meshes [27,46]. For
example, in [27,46], monotonicity of the numerical scheme can be achieved only for a scalar diffusion tensor under some
restrictive condition on the shape of the parallelograms and for a specific range of the diffusion value. A different class of finite
volume schemes that are able to preserve the maximum principle is based on a nonlinear discretization [11,42,48]. In a finite
element framework, the nonlinear discretization which satisfies a DMP has been proposed in [37]. We also mention that, quite
recently, a post-processing technique based on a ‘‘repair’’ concept has been proposed in [43] to recover a positivity condition
from a numerical solution that does not satisfy a maximum principle. Finally, analysis of the DMP for higher-order finite ele-
ment and finite volume methods is limited mainly to 1D problems (see [49,51] and references there in).

Different formulations of a DMP are possible since they can be derived from different formulations of the continuous max-
imum principle [34]. One example is the study in [51], where the method is said to satisfy a maximum principle for problems
with zero source term, if p on X is less than or equal to p on oX. Another formulation of a DMP follows from requiring the
nonnegativity of the inverse of the stiffness system. Suppose that the discretization of L(p) = q with homogeneous Dirichlet
boundary conditions leads to the system of discrete equations Aph = qh. If A�1 P 0, i.e. if each element of A�1 is nonnegative,
then the discrete system satisfies a property formally similar to that of the continuous system: qh P 0 implies that ph P 0.

A nonsingular matrix A whose inverse has the sign property discussed above is called monotone [50]. In this paper as well
as in [46] a numerical method is called monotone if it leads to a monotone matrix. An effective way to ensure that the mono-
tonicity property holds is to construct a numerical method such that the matrix A is an M-matrix [10]. In fact, a great number
of spatial finite difference discretizations for second-order elliptic problems yield M-matrices [12–15,24–26], which guaran-
tees the monotonicity of the numerical method. For discretizations not leading to M-matrices, far less is known. An early
analysis was conducted by Bramble and Hubbard [13,15]. In [51], a weaker form of the maximum principle was analyzed
for more general problems. In [46] some local criteria were recently investigated to ensure monotone solutions of elliptic
problem with scalar diffusion tensors using a nine-point scheme on meshes of regular parallelograms.

In this paper, we consider discrete formulations of the maximum principle and derive sufficient monotonicity criteria for
the Mimetic Finite Difference (MFD) method in mixed or mixed-hybrid form [17]. The MFD methods mimic important prop-
erties of physical and mathematical models such as fundamental identities of the tensor and vector calculus, conservation
laws, solution symmetry, and positivity. The MFD method and its earlier version, the support-operator method, has been
successfully employed for solving problems of continuum mechanics [44], electromagnetism [32,38], gas dynamics [20], lin-
ear diffusion (see, e.g., [6,9,30,33,39,45], and references therein), convection–diffusion [23], Stokes [5,4,7], elasticity [3],
eigenvalues [21] and two-phase flows in porous media [1,40]. A posteriori estimators have also been developed in [2,8].

The monotonicity criteria that we develop are local as they are imposed on positivity and sparsity of the mimetic inner
product at the elemental level. Using such conditions we construct monotone MFD methods for general (also anisotropic)
diffusion tensors and different families of meshes that are widely in use in the scientific community. For instance, parallel-
ograms in 2D and oblique parallelepipeds in 3D are used to represent tilted layers, while meshes from Adaptive Mesh Refine-
ment (AMR) techniques [47] are used to increase local accuracy of the numerical solution. Concerning accuracy and stability,
our criteria are not restrictive since all theoretical results about the convergence of the numerical flux and the superconver-
gence of the pressure variable derived in [17] still hold. It turns out that the resulting matrix for the Lagrange multipliers of
the mixed-hybrid form is a nonsingular M-matrix. This fact ensures that the inverse matrix has only nonnegative elements.

The outline of this article is as follows. In Section 2, we describe the problem and recall fundamental results on the max-
imum principle. In Section 3, we study the algebraic monotonicity conditions for mixed-hybrid discretizations. In Section 4,
we formulate sufficient monotonicity conditions for the MFD method. We study separately simplicial meshes, quadrilateral
meshes, hexahedral meshes and orthogonal AMR meshes. In Section 5, we illustrate our findings with numerical results. In
Section 6, we offer the final remarks and conclusions.

2. Discretization of the diffusion problem in mixed form

Let X be a bounded, simply connected, open subset of Rd for d = 2, 3 with boundary C. For simplicity, we assume that X be
either a polyhedral domain for d = 3 or a polygonal domain for d = 2. We consider the diffusion of a scalar quantity p in an
anisotropic heterogeneous medium filling X, which is governed by the second-order elliptic partial differential equation
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