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Correcting mesh-based force calculations to conserve
both energy and momentum in molecular dynamics simulations
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The high cost of evaluating forces in molecular dynamics makes it necessary to use approximations. The
most effective approximations for nonbonded 2-body interactions, such as particle–particle particle–mesh,
particle–mesh Ewald, and multilevel summation, split the potential into a short-range part which is evaluated
directly and a long-range part which is interpolated from a mesh. This results in a force that, though still con-
servative, is not translation-invariant, resulting in drift in the linear momentum. A common remedy is to apply
a uniform correction to all forces to conserve linear momentum, but this results in a force that is not conser-
vative. Described here is a mass-weighted correction, based on the simple idea of constraining the center of
mass, which does yield a conservative force.

Consider a system of N particles with masses mi and positions ~ri ¼~riðtÞ, i ¼ 1; 2; . . . ;N , which evolve in
time t as dictated by Newton’s second law of motion

mi
€~ri ¼ ~F iðR; _R; tÞ; ð1Þ

where R denotes~r1,~r2, . . .,~rN . Often linear momentum
P

imi
_~ri is conserved, which is equivalent to

P
i
~F i ¼~0.

In particular, a translation-invariant potential energy function

Uð~r1 þ~d; . . . ;~rN þ~dÞ ¼ Uð~r1; . . . ;~rN Þ
yields forces ~F i ¼ �riUðRÞ that sum up to zero.

For a computer simulation the cost of evaluating forces can be very high. In particular, 2-body nonbonded
interactions require OðN 2Þ operations unless approximations are used. The most efficient approximations are
obtained with methods such as particle–particle particle–mesh [1], particle–mesh Ewald (PME) [2], and mul-
tilevel summation [3–5], which split the potential into a short-range part calculated directly and a long-range
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part interpolated from a mesh. The use of a mesh yields an approximation U aðRÞ to the long-range part of the
potential energy which is not translation-invariant. This leads not only to a violation of Newton’s third law
but causes particles to exert forces on themselves [6]! (Methods based on a hierarchical clustering of interac-
tions, such as the fast multipole method [7], do not have this problem; however, they compute forces that are
not conservative [8] and appear to be otherwise less efficient for molecular dynamics [9,4], though these studies
are based on older versions of the methods.)

Failure to conserve linear momentum is at best a nuisance, since it means that even if the center of mass is
initially at rest, it will start moving as the simulation progresses. A common remedy [2,10,11] is to subtract out
the average net force ð1=NÞ

P
k
~F a

k from each force ~F a
i . However, the resulting force is not conservative even if

the original approximate force is conservative. For a conservative force, the Jacobian matrix of ~F i with respect
to~rj must equal the transpose of the Jacobian matrix of ~F j with respect to~ri. However, such is not the case for
the adjusted force ~F a

i ðRÞ � ð1=NÞ
P

k
~F a

kðRÞ, whose Jacobian matrix with respect to position~rj is given by

o

o~rj

~F a
i �

1

N

X
k

~F a
k

 !
¼ �H

$
a
ij þ

1

N

X
k

H
$

a
kj;

where H
$

a
ij is the ði; jÞth 3� 3 block of the Hessian of the potential energy function U a.

The negative effect of this simple force correction on conservation of energy is observed in [12, p. 30].
A system of 216 rigid SPC waters is simulated for 10 ns in a cube of side length 18.7 Å. PME is used with
a 18� 18� 18 grid, a direct sum cutoff of 8 Å, and the Verlet integrator with a 2 fs time step. The use of
the force correction produces a drift of �0.14 kcal/mol amidst fluctuations of ±0.05 kcal/mol. Without the
force correction the drift is not discernible.

A mass-weighted correction to the force is conservative, however. Assume that the initial linear momentum
is zero:X

i

mi
_~rið0Þ ¼ 0

(which is attained by subtracting a constant velocity from each velocity). Denote the displacement of the cen-
ter of mass by

~gðRÞ ¼ 1

mtot

X
k

mkð~rk �~rkð0ÞÞ;

where mtot ¼
P

kmk, and conservation of linear momentum is equivalent to the holonomic constraint

~gðRÞ ¼ 0:

This can be combined with the equations of motion (1) by adding constraint forces

mi
€~ri ¼ ~F ið. . .Þ þ mi

mtot

~k;

where~k is a set of Lagrange multipliers and its coefficient is obtained from the Jacobian matrix of ~gðRÞ with

respect to~ri. Eliminating ~k (by twice differentiating the constraints and substituting in the equations of mo-
tion) leads to

mi
€~ri ¼ ~F ið. . .Þ � mi

mtot

X
k

~F kð. . .Þ:

A direct proof that the corrected force is conservative is obtained by defining a corrected potential energy
function

U cðRÞ ¼ U að~r1 �~gðRÞ; . . . ;~rN �~gðRÞÞ:
This is translation-invariant, and the use of a potential leads to conservative forces

~F c
i ð~r1; . . . ;~rNÞ ¼ �riU cð~r1; . . . ;~rN Þ

¼ ~F a
i ð~r1 �~gðRÞ; . . . ;~rN �~gðRÞÞ �

mi

mtot

X
k

~F a
kð~r1 �~gðRÞ; . . . ;~rN �~gðRÞÞ: ð2Þ
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