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Abstract

In 1999, Jean-Paul Caltagirone and Jérôme Breil have developed in their paper [Caltagirone, J. Breil, Sur une méthode
de projection vectorielle pour la résolution des équations de Navier–Stokes, C.R. Acad. Sci. Paris 327(Série II b) (1999)
1179–1184] a new method to compute a divergence-free velocity. They have used the grad(div) operator to extract the sole-
noidal part of a given vector field. In this contribution we explain how this method can be considered as a real Helmholtz
decomposition and we present a stable approximation in the framework of spectral methods. Numerical results are pre-
sented to illustrate the efficiency of this approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The approximation of the grad(div) operator pervades many applied physics domains. Besides the ideal
ocean wave problem without Coriolis force and no friction [15], it arises in the Maxwell equations [11] and
in the Navier–Stokes equations for fluid flow problems when using a penalty formulation for the incompress-
ibility condition [14]. The problem also arises in the ideal linear magneto hydrodynamics equations when com-
puting the stability behavior of a fusion plasma device [16]. Another original application of this operator was
introduced by J.P. Caltagirone and J. Breil in their paper [13] where they used this operator to extract from a
given velocity field its solenoidal part. These authors had christened it vector projection which consists in solv-
ing the following problem: Let u* be a non-divergence free velocity field, find a couple of vector fields (u,v)
such that

� $ðr � uÞ ¼ $ðr � u�Þ; in X; ð1:1Þ
u � n ¼ 0; on oX; ð1:2Þ
v ¼ uþ u�; in X; ð1:3Þ
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where v and u are respectively divergence-free and curl-free. Here X � Rdðd ¼ 2; 3Þ is a simply connected and
bounded domain with Lipschitzian border. n denotes the outer unit normal along the boundary.

The objective of this note is on the one hand to explain how the previous system can be considered as a
Helmholtz decomposition step and on the other hand to present a stable discretization in the framework of
spectral methods. We end this note by presenting a relevant numerical experiment.

Some notations – The symbol L2(X) stands for the usual Lebesgue space and H 1ðXÞ, the Sobolev space,
involves all the functions that are, together with their gradient, in L2(X). The CðXÞ denotes the space of con-
tinuous functions defined in X.

2. Continuous problems and their variational formulations

In order to write the continuous problem in its variational form we introduce the relevant spaces of
functions.

Let H(div,X) denote the space (see [12])

Hðdiv;XÞ ¼ fw 2 ðL2ðXÞÞd ; divw 2 L2ðXÞg;
endowed with the natural norm

kwkHðdiv;XÞ ¼ ðkwk
2
ðL2ðXÞÞd þ kdivwk2

L2ðXÞÞ
1=2
:

The continuous problem we consider reads: Find u in H(div,X) it such that:

� $ðr � uÞ ¼ f; in X; ð2:4Þ
u � n ¼ 0; on oX; ð2:5Þ

where f is a given data.
Since curl (grad Æ) ” 0 we notice that a necessary condition for the existence of a solution to problems (2.4)

and (2.5) is that curl f = 0 and by consequence we can state the existence of a function uðx; yÞ such that

f ¼ gradu:

This leads to restate the basic problem as: For a given u 2 L2
0ðXÞ, find u 2 H(div,X) such that

� $ðr � uÞ ¼ $u; in X; ð2:6Þ
u � n ¼ 0; on oX; ð2:7Þ

where L2
0ðXÞ denotes the L2(X) subspace of functions having zero average values. This formulation is equiv-

alent to the dual one that reads: For a given u 2 L2
0ðXÞ find u 2 X(X) and w 2 L2

0ðXÞ such that:

u� $w ¼ 0; in X; ð2:8Þ
� r � u ¼ u; in X; ð2:9Þ
u � n ¼ 0; on oX; ð2:10Þ

where

X ðXÞ ¼ fw 2 Hðdiv;XÞ; w � n ¼ 0 on oXg:

This dual formulation can be rewritten as a classical Helmholtz decomposition, indeed: Let u* and v be two
vector fields such that $ Æ u* = u, u* Æ n = 0 and v = u + u*. The problem (2.8)–(2.10) then becomes: Find

v 2 X(X) and w in L2
0ðXÞ such that

v� $w ¼ u�; in X; ð2:11Þ
r � v ¼ 0; in X; ð2:12Þ
v � n ¼ 0; on oX: ð2:13Þ

Consequently the Helmholtz decomposition of the vector field u* can be achieved using either the primal for-
mulation (1.1)–(1.3) or its equivalent dual one (2.11)–(2.13).
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