Tetrahedron 68 (2012) 819-829

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Potential anti-inflammatory diterpenes from Premna obtusifolia

Abdul-Wahab Salae ^a, Apinya Rodjun ^a, Chatchanok Karalai ^{a, b, *}, Chanita Ponglimanont ^a, Suchada Chantrapromma ^{a, b}, Akkharawit Kanjana-Opas ^c, Supinya Tewtrakul ^d, Hoong-Kun Fun ^e

^a Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

^b Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkha 90112, Thailand

^c Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

^d Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkha 90112, Thailand

^eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

ARTICLE INFO

Article history: Received 19 August 2011 Received in revised form 31 October 2011 Accepted 21 November 2011 Available online 27 November 2011

Keywords: Premna obtusifolia Diterpene Sesquiterpene Obtusinone A, B, and C Antibacterial activity Anti-inflammatory activity

1. Introduction

The genus *Premna* L. (Verbenaceae) contains about 200 species worldwide, which are mainly distributed in tropical and subtropical Asia, Africa, Australia, and Pacific Islands¹ and 30 species are found in Thailand.² Previous studies on the biological and chemical constituents of members of the genus *Premna* have resulted in the isolation of triterpenes,³ diterpenes,^{4–8} sesquiterpenes,⁹ iridoid glycosides,^{10,11} phenylethanoids,^{12,13} and xanthones.¹⁴ Some of which have exhibited significant antibacterial,^{5,6,9,10} and cytotoxic activities.^{7,8} *Premna obtusifolia* is widely distributed in the southern part of Thailand and locally known as 'akkhi thawan thale'.¹⁵ Crude hexane and CH₂Cl₂ extracts from the twigs and roots of this plant have displayed potent inhibitory activity against lipopolysaccharide (LPS)-induced NO production in RAW 264.7 cell lines from our preliminary test. We report herein eleven new diterpenes (1–11) and seventeen known compounds (12–28). The antibacterial and anti-inflammatory activities of selected compounds are also reported.

ABSTRACT

Eleven new diterpenoids: pimaranes (1,2), rosanes (3) abietanes (4-7), icetexanes (8), and rearranged icetexanes (9-11), together with fifteen known diterpenes (12-26) and two known sesquiterpenes (27,28) have been isolated from the roots and twigs of *Premna obtusifolia*. The structures of these compounds were elucidated on the basis of spectroscopic analysis and X-ray crystallographic data of 8 and 9 were also determined. The antibacterial and anti-inflammatory activities of the isolates were evaluated.

© 2011 Elsevier Ltd. All rights reserved.

2. Results and discussion

Investigation of the roots and twigs of *P. obtusifolia* furnished eleven new compounds (1–11) (Fig. 1), along with seventeen known compounds (12–28) (Fig. 2). The known compounds were identified as lambertic acid (12),¹⁶ ferruginol (13),¹⁷ *O*-methyl ferruginol (14),¹⁸ sugiol (15), royleanone (16),¹⁹ horminone (17),²⁰ montbretrol (18),²¹ 14-deoxycoleon (19),²² taxodion (20),²³ arucadiol (21),²⁴ 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (22),¹⁸ salvicanaraldehyde (23),²⁵ 5,6-dihydro-6 α -hydroxysalviasperanol (24), salviasperanol (25),²⁶ 11,12-dihydroxy-8,11,13-icetexatrien-1-one (26),²⁷ 4 β ,5 β -dihydroxy-10-*epi*-eudesmane (27),²⁸ 4 β ,10 β -dihydroxyaromadendrane (28),²⁹ by comparison of their physical, UV, IR, ¹H and ¹³C NMR data with those already published. We now report the characterization of 1–11.

Compound **1** was obtained as a white amorphous solid, which exhibited a molecular ion $[M]^{+}$ peak at 304.2407 (calcd 304.2402) in the HREIMS corresponding to a molecular formula $C_{20}H_{32}O_2$ with 5° of unsaturation. The IR spectrum showed strong absorption bands for hydroxyl at 3339 cm⁻¹ and double bond at 1637 cm⁻¹. The combined analysis of the ¹³C NMR (Table 2) and DEPT spectra revealed the presence of 20 carbon signals assigned to four methyls, six methylenes, six methines including those of two oxymethines, and two olefinic methine

^{*} Corresponding author. Tel.: +66 7428 8444; fax: +66 7455 8841; e-mail addresses: chatchanok.k@psu.ac.th, chatchanok_k@yahoo.com (C. Karalai).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.11.058

9 R = OH 10 R = H

Fig. 1. Structures of compounds 1-11.

carbons and four guaternary carbons. The occurrence in the ¹H NMR spectrum (Table 1) of a vinyl group with three dd resonances at $\delta_{\rm H}$ 5.80 (*J*=17.4 and 10.8 Hz, H-15), $\delta_{\rm H}$ 4.92 (*J*=17.4 and 1.2 Hz, H_b-16), and $\delta_{\rm H}$ 4.86 (J=10.8 and 1.2 Hz, H_a-16) and the presence of a broad doublet for an olefinic methine proton at $\delta_{\rm H}$ 5.39 (J=3.0 Hz, H-7) and four methyl group singlets suggested a pimarane type skeleton.³⁰ Two oxymethine carbons resonated at $\delta_{\rm C}$ 79.0 (C-1) and 76.1 (C-3). Their positions were deduced from the HMBC correlations (Fig. 3) observed between H-1 $(\delta_{\rm H} 3.55)$ and C-2 $(\delta 37.9)$ and C-10 $(\delta 41.5)$ and between H-3 $(\delta_{\rm H} 3.33)$ and C-2 $(\delta 37.9)$ and C-4 $(\delta 38.7)$, respectively. The oxymethine protons H-1 and H-3 both resonated as a doublet of doublets with large and small coupling constants of 12.0 and 4.5 Hz and 12.0 and 4.2 Hz, respectively. The magnitude of these coupling constants suggested the α axial position for both of these protons. These assignments were further supported from NOESY experiments (Fig. 3). An olefinic methine proton at δ 5.39 (H-7) showed HMBC correlations (Fig. 3) with the carbons at δ 46.7 (C-14), 48.7 (C-5), and 52.4 (C-9) and COSY cross-peak with the methylene protons H₂-6 at δ 1.97–2.04 and 2.03–2.11. The relative stereochemistry at C-13 was established by comparison of the ¹³C NMR chemical shifts of C-12, C-13, C-14, C-15, C-16, and C-17 with those of isopimarane diterpenoids:^{30–33} isopimaradiene³⁰ (1a) establishing an axial position for the Me-17 and an equatorial position for the vinyl group. Compound **1** was therefore identified as isopimara-7,15-dien- 1β , 3β -diol.

Compound 2 was also obtained as a white amorphous solid. The HREIMS showed a molecular ion $[M]^+$ peak at m/z 304.2403 (calcd

Download English Version:

https://daneshyari.com/en/article/5221163

Download Persian Version:

https://daneshyari.com/article/5221163

Daneshyari.com