\$50 ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Carbohydrate-derived PSE acetals: controlled base-induced ring cleavage

Florence Chéry ^a, Elena Cabianca ^{a,b}, Arnaud Tatibouët ^{a,*}, Ottorino De Lucchi ^b, Patrick Rollin ^{a,*}

ARTICLE INFO

Article history:
Received 30 June 2011
Received in revised form 2 November 2011
Accepted 4 November 2011
Available online 11 November 2011

Keywords: Acetal Phenylsulfonylethylidene Alkoxyvinyl sulfones Protecting group Carbohydrate

ABSTRACT

Retro-Michael type reactions applied to PSE acetals protecting monosaccharides led either to complete removal or to ring-cleavage. In protic medium, application of standard basic conditions resulted in acetal deprotection, while the use of butyl lithium in aprotic medium allowed controlled ring-cleavage. A regio- and stereoselective C- over O-alkylation was observed during the process. Furthermore, depending on the substrates and the reaction conditions involved, new carbohydrate-derived β -alkoxyvinyl sulfones were obtained with varying regioselectivity.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We have introduced in the carbohydrate field phenyl-sulfonylethylidene (PSE) acetals, which can readily be prepared through a Michael-type reaction of the corresponding diols with 1,2-bis(phenylsulfonyl)ethylene (BPSE) (Scheme 1).

Scheme 1. Synthesis of carbohydrate-derived PSE acetals.

Our previous studies have disclosed that those atypical PSE acetals show striking properties compared to standard acetal protective groups—notably a strong reluctance to acid-catalyzed hydrolysis. A major part of sulfone chemistry is dedicated to the formation and reactivity of the derived stabilized carbanions. In particular, simple α -sulfonyl carbanions have been used in alkylation or in acylation reactions, in aldol-type reactions as well as in Michael additions on α,β -unsaturated acceptors. Whereas anions derived from γ -sulfonylated acetals have been studied extensively, the reactivity of β -acetalic sulfones in basic media was scarcely investigated. 9,10 On the other hand, elimination of a sulfone

group through reductive cleavage of a C–S bond is a standard reaction. In the present work, we report on the behaviour of previously described carbohydrate-derived PSE acetals Ib.2 under strongly basic conditions to explore the selective ring cleavage and deprotection conditions.

2. Results and discussion

2.1. Retro-Michael reaction for PSE acetal removal

From earlier results, it is known that PSE acetals are not affected under acidic conditions; ^{1b,2c} contrastingly, they can undergo cleavage under strongly reductive conditions (e.g., LiAlH₄^{1b}) or under strongly basic conditions (LiNH₂ in liquid ammonia¹²). PSE acetal removal should follow two consecutive retro-Michael type reactions involving two possible isomeric intermediates **A** and **B** (Scheme 2).

Taking into consideration that the previously reported conditions to effect PSE acetal cleavage are particularly harsh and should be modified, we have performed a preliminary study (Table 1) on the reactivity of our standard model substrate—methyl 2,3-di-O-benzyl-4,6-O-(2-phenylsulfonyl)ethylidene- α -D-glucopyranoside 1 and other selected pyrano- and furano-type PSE acetals (Scheme 3).

Deprotections under various protic conditions were first tested on PSE acetal **1**. This exploration (Table 1, entries 1–7) showed that KOH or CsCO₃ in refluxing EtOH effected total cleavage of the acetal with reasonably good yields. In one case (entry 5) direct acetylation of the crude mixture afforded the 4.6-di-O-acetyl derivative in 86%

^a Institut de Chimie Organique et Analytique, UMR 6005, Université d'Orléans, B.P. 6759, F-45067 Orléans, France

^b Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, I-30123 Venezia, Italy

^{*} Corresponding authors. Tel.: +33 (0)238 41 73 70; fax: +33 (0)238 41 72 81; e-mail address: arnaud.tatibouet@univ-orleans.fr (A. Tatibouët).

Scheme 2. Suggested double retro-Michael mechanism for the cleavage of carbohydrate-derived PSE acetals.

Table 1Base-induced cleavage of PSE acetals in protic solvents

Entry	PSE acetal	Base [c]	Solvent	Temperature	Time	Yield
1	1	LiCl	MeOH/H ₂ O	rt	24 h	No reaction
2	1	NaOH	(1:1) MaQU/II O	***	24 h	No reaction
2	1	11 M	MeOH/H ₂ O (1:1)	It	24 11	No reaction
3	1	K ₂ CO ₃	, ,	Reflux	16 h	No reaction
		[0.35 M]	(1:1)			
4	1	КОН	EtOH	Reflux	3 h	51%
5	1	[0.5 M] KOH	EtOH	Reflux	5 h	86% ^a
3	1	[0.5 M]	ш	Reliux	311	00%
6	1	CsCO ₃	EtOH	Reflux	5 h	70%
		[0.4 M]				
7	1	CsCO ₃	EtOH	Reflux	3 h	69%
8	2	[0.5 M] KOH	EtOH/H ₂ O	Reflux	16 h	63%
0	2	[1.5 M]	(1:1)	Reliux	1011	03%
9	2	KOH	EtOH	Reflux	16 h	65%
		[0.5 M]				
10	3	КОН	EtOH	Reflux	16 h	80%
11		[0.5 M]	E+OH	D - G	2.1.	020/
11	4	KOH [0.6 M]	EtOH	Reflux	3 h	82%
		[U.U IVI]				

^a Per-O-acetylation was realized to optimize purification of the compound.

 $\label{eq:cheme 3. PSE acetals examined in the base-induced deprotection assays. \\$

yield. Application of the KOH/EtOH procedure to the D-mannopyranoside **2**, ^{1b} the D-allopyranoside **3**, ^{2a} and the D-xylofuranose **4** ^{1b} led to similar deprotection yields, which compared favourably with the results previously reported by us: using the LiAlH₄/Et₂O procedure, PSE acetal cleavage of **1** and **4** was effected in 77% and 78% yields, respectively. ^{1b} Therefore it comes out that the above protic conditions can advantageously be used for the deprotection of PSE acetals.

2.2. Retro-Michael reaction in controlled ring opening of PSE acetals

The retro-Michael process outlined in Scheme 2 allows to predict a possible controlled ring opening to produce synthetically

useful alkoxyvinyl sulfones: ¹² applying a strong base in aprotic conditions would cleave the PSE acetal ring to form isomeric intermediates **A** and **B** (Scheme 2).

Our model PSE acetal **1** was subjected to the conditions previously set up by Simpkins to convert PSE acetals into alkoxyvinyl sulfones, 9 using n-BuLi (2 equiv) in THF at -78 °C, then quenching the reaction with electrophilic species—namely a protic acid or an alkyl halide (Scheme 4). Proton-quenching by acetic acid resulted in a ca. 1:1 mixture of regioisomeric alkoxyvinyl sulfones **5** and **6** in which the double bond was shown to be exclusively E-configurated. Alkyl halide quenching led in moderate yields to regioisomeric pairs of C-alkylated B-alkoxyvinyl sulfones **7**, **9** and **11**–**16**. Additionally, minor C-methylation of the phenyl group was detected in the sole case of **8/10**.

Scheme 4. Base-induced ring cleavage of PSE acetal 1 and C-alkylation.

The poor regioselectivity observed between the primary (O-6) and the secondary (O-4) positions on the carbohydrate template might result from an equilibrium established in such conditions between the cyclic acetal and open-chain anionic species (Scheme 5). The first equivalent of n-BuLi is used to extrude the proton α to the sulfonyl group; elimination then occurs with cleavage of the cyclic acetal $\bf A$ to produce a vinyl sulfone $\bf B$ or $\bf C$. The second equivalent of n-BuLi extrudes the most reactive α -vinylic proton to form the stabilized carbanion $\bf D$ or $\bf E$, which finally attacks the electrophilic species to stereoselectively afford the E-alkoxyvinyl sulfone. 13

$$\begin{array}{c} \text{PhO}_2 \text{S} & \text{O} \\ \text{RO} & \text{I}_{1,2} \\ \text{A} & \text{PhO}_2 \text{S} & \text{O} \\ \text{PhO}_2 \text{S} & \text{O} \\ \text{I}_1 \oplus \text{RO} & \text{I}_{1,2} \\ \text{Base} & \text{C} & \text{C} \\ \\ \text{PhO}_2 \text{S} & \text{O} & \text{C} & \text{C} \\ \text{PhO}_2 \text{S} & \text{O} & \text{C} \\ \text{PhO}_2 \text{S} & \text{C} & \text{C} \\ \text{PhO}$$

Scheme 5. Intermediates in base-induced ring cleavage of a PSE acetal.

The retro-Michael O-regioselection outcome of the cleavage is indeed disappointing. On the contrary, the regio- and stereo-selectivities of the alkylation are far more satisfactory. No O-alkylation was detected whatever excess of electrophile used and a selective C-alkylation in α position of the β -alkoxyvinyl sulfones was observed. Eisch et al. have shown α -metallation of vinyl

Download English Version:

https://daneshyari.com/en/article/5221314

Download Persian Version:

https://daneshyari.com/article/5221314

<u>Daneshyari.com</u>