ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

The conversion of 2-cyano cyanothioformanilides into 3-aminoindole-2-carbonitriles using triphenylphosphine

Panayiotis A. Koutentis*, Sophia S. Michaelidou

Department of Chemistry, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus

ARTICLE INFO

Article history: Received 6 April 2010 Received in revised form 21 May 2010 Accepted 7 June 2010 Available online 12 June 2010

ABSTRACT

2-Cyano cyanothioformanilide 3a reacts with triphenylphosphine in the presence of water to give 2-(cyanomethyleneamino)benzonitrile **4a**, 2-(cyanomethylamino)benzonitrile **5**, 3-aminoindole-2-carbonitrile **2a** and (2-cyanoindol-3-yl)iminotriphenylphosphorane **6a**. In the presence of p-toluenesulfonic acid in MeOH the reaction between 2-cyano cyanothioformanilide 3a and triphenylphosphine (2 equiv) gives 3-aminoindole-2-carbonitrile 2a in 90% yield. Under the same conditions 2-(cyanomethyleneamino)benzonitrile **4a** gives anthranilonitrile **8a**, 3-aminoindole-2-carbonitrile **2a** and *N*-(2-cyanophenyl) formamide 9. In addition, substituted 2-cyano cyanothioformanilides 3b-f react with triphenylphosphine and p-toluenesulfonic acid in MeOH to give 3-aminoindole-2-carbonitriles **2b-f** in 63–75% yields. Under analogous conditions 2-cyano-4,5-dimethoxyphenyl cyanothioformanilide 2g gives only 4,5-dimethoxyanthranilonitrile 8g and 4,6,7-trimethoxyquinazoline-2-carbonitrile 14g, but in refluxing dry PhMe in the absence of p-toluenesulfonic acid 2-cyano-4,5-dimethoxyphenyl cyanothioformanilide 3g, (2-cyano-5,6-dimethoxyindol-3-yl)iminotriphenylphosphorane 6g and 2-(cyanomethyleneamino)-4,5dimethoxybenzonitrile 4g are obtained. The structure of 2-(cvanomethyleneamino)-4.5-dimethoxybenzonitrile 4g is supported unambiguously via independent synthesis and comparison to the isomeric 6,7-dimethoxyquinazoline-2-carbonitrile 15. All new compounds are fully characterised and a tentative mechanism for the transformation of 2-cyano cyanothioformanilides to indoles is proposed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cyanothioformanilides (thiooxanilonitriles) demonstrate herbicidal activity, ¹ and have been used extensively for the preparation of various heterocycles including pyrroles, ^{2a,b} imidazoles, ^{3a–k} oxazoles, ^{4a–c} 1,3,4-thiadiazoles, ⁵ quinazolines ^{6a–c} and other fused heterocycles. ^{7a–g} Furthermore, cyanothioformanilides participate in Diels—Alder ^{8a–c} and ene ⁹ reactions, can be N aroylated ¹⁰ and on addition to the nitrile of H₂O, H₂S or NH₂OH afford amino-oxothioacetylanilines, aminothioxothioacetylanilines (*N*-aryldithioxamides) ^{3d,11} or amidinothioformylanilines, ^{4c,12} respectively.

Cyanothioformanilides are traditionally prepared by the reaction of N-aryl isothiocyanates with cyanide, $^{3j,4c,6a,7t,7g,8c,13a-d}$ or bis(dialkylamino)acetonitriles 14 and also via dethiohydration of N-aryldithiooxamides, 13d,15 thionation–dethiohydration of N-arylthiooxalamides 15 and thionation–dehydration of aryloxalamides. More recent methods involve treating 2-(4-chloro-5H-1,2,3-dithiazol-5-ylideneamino)benzenes with either the oxidising agent m-CPBA, the reducing agent NaBH₃CN, or with nucleophilic (thiophilic) reagents such as aq NaOH, NH₂OH, the resulting N-Parameters N-P

butylamine, 20 tryptamine, 21 o-aminophenethylamine and o-phenylenediamine, 22 triphenylphosphoraneylidenes, 23 triphenylphosphine in moist DCM $^{24a-h}$ and with the use of ethylmagnesium bromide (1 equiv). 24h,25

Recently, we showed that treating 2-(4-chloro-5*H*-1,2,3-dithiazol-5-ylideneamino) benzonitriles **1** with triphenylphosphine (4 equiv) gave 3-aminoindole-2-carbonitriles **2** and not the expected 2-cyano cyanothioformanilides **3**.²⁶ The latter compounds could however, be prepared from the dithiazolimines **1** on treatment with DBU in high yield²⁷ (Scheme 1).

Scheme 1.

 $^{^{\}ast}$ Corresponding author. Tel.: +00357 22 892783; fax: +00357 22 892809; e-mail address: koutenti@ucy.ac.cy (P.A. Koutentis).

While a mechanism was not put forward for the formation of the indoles **2**, our initial thoughts focused on the triphenylphosphine behaving as a typical thiophile and attacking the dithiazolimine S-2 ring sulfur (Scheme 2). This would be expected to lead to the 2-cyano cyanothioformanilide **3**, however, as mentioned above this was not an observed.

In light of this a pure sample of 2-cyano cyanothioformanilide **3a** (R=H) was treated with triphenylphosphine to determine whether it was a possible intermediate in the dithiazole to indole conversion. Below we report our findings related to the treatment of 2-cyano cyanothioformanilides **3** with triphenylphosphine.

2. Results and discussion

2.1. Reaction of 2-cyano cyanothioformanilides with triphenylphosphine

Treatment of a solution of the cyanothioformanilide **3a** in dry DCM at ca. 20 °C with triphenylphosphine (2 equiv) rapidly gave several products: Triphenylphosphine sulfide, 2-(cyanomethylamino)benzonitrile **5**, the iminophosphorane **6a** and triphenylphosphine oxide (Table 1). Interestingly 3-aminoindole-2-carbonitrile **2a** was not observed, however, as the equivalents of water added to the reaction mixture were increased the yield of iminophosphorane **6a** decreased while that of the 3-aminoindole **2a** increased. The overall yields of indoles (**2a**+**6a**) remained relatively steady. Furthermore, a new compound **4a** was isolated in low yield, which was relatively unstable and identified as 2-(cyanomethyleneamino)benzonitrile **4a**.

2-(Cyanomethyleneamino)benzonitrile 4a was obtained as colourless cotton fibres, mp 75-76 °C (from cyclohexane). Microanalysis and mass spectrometry supported the formula C₉H₅N₃ $[m/z 155 (M^+, 28\%)]$. The presence of a cyano group was supported by an IR band at 2234 cm⁻¹ and stretching frequencies could not be observed for any 1° or 2° amino functionality. The ¹³C NMR spectrum showed nine separate carbon resonances of which four were quaternary carbons (DEPT-135 studies). Two of the quaternary signals (δ_C 118.3 and 116.2 ppm) were typical of cyano carbons, tentatively supporting the presence of two nitrile groups. The ¹H NMR spectrum identified five resonances, four of which clearly belonged to aromatic hydrogens (7.78, 7.68, 7.50 and 7.18 ppm) of a 1,2-disubstituted benzene ring. The signal at $\delta_{\rm H}$ 7.63 ppm, however, was observed as a singlet. Based on the above data two possible structures could be proposed, which maintained the carbon and nitrogen connectivity of the starting 2-cyano

Table 1Reaction of cyanothioformanilide **3a** (0.27 mmol) with triphenylphosphine (2 equiv) under a CaCl₂ drying tube

$$PPh_{3}=S, \ \textbf{4a}, \textbf{5}, \textbf{2a}, \textbf{6a}, \ PPh_{3}=O$$

$$3a$$

$$PPh_{3}=S, \ \textbf{4a}, \textbf{5}, \textbf{2a}, \textbf{6a}, \ PPh_{3}=O$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{3}=O$$

H ₂ O (equiv)	Solvent	Temp (°C)	Time (min)	Yields (%)					
				PPh ₃ =S	4 a	5	2a	6a	PPh ₃ =O
0	DCM	20	5	78	_	20	_	70	54
1	DCM	20	3	80	_	25	6	63	58
2	DCM	20	1	80	7	30	13	50	70
3	DCM	20	1	80	6	25	21	48	71
0	PhH	20	5	84	11	38	3	45	69
0	PhH	40	5	78	5	23	1	69	49
0	PhH	80	1	87	6	traces	9	79	34
0	PhMe	20	3	86	6	17	5	68	51
0	PhMe ^a	20	10	79	_	28	58	7	80
0	PhMe	110	1	86	3	5	7	81	32
0	MeOH	20	70	45	9	63	_	23	49
0	MeOH ^b	20	60	69	4	59	5	23	71
0	MeOHa	20	50	72	_	9	90	_	80
0	MeOH	60	5	52	5	61	1	27	51

^a PTSA (1 equiv) was added to the reaction mixture.

b PTSA (5 mol%) was added to the reaction mixture.

Download English Version:

https://daneshyari.com/en/article/5221399

Download Persian Version:

https://daneshyari.com/article/5221399

<u>Daneshyari.com</u>