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Abstract

In this paper, we present a time and space rescaling scheme for the computation of moving interface problems. The idea
is to map time–space such that the interfaces can evolve exponentially fast in the new time scale while the area/volume
enclosed by the interface remains unchanged. The rescaling scheme significantly reduces the computation time (especially
for slow growth), and enables one to accurately simulate the very long-time dynamics of moving interfaces. We then imple-
ment this scheme in a Hele–Shaw problem, examine the dynamics for a number of different injection fluxes, and present the
largest and most pronounced viscous fingering simulations to date.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many physical problems involve moving interfaces, such as the growth of crystals, the dynamics of Hele–
Shaw flows, etc. Characterizing the formation and dynamics of complex interface morphologies due to insta-
bility has long been a challenging research topic (e.g. [1–6]). While numerical simulation has become one of the
most important tools for investigating the motion of interfaces, it is still difficult to obtain accurate approx-
imations, especially for the long-time evolution of interfaces. Specifically, difficulties arise because one must
efficiently and accurately resolve the multiple time and space scales involved in the physics that lead to the
development of complex morphologies.

There are many computational methods that have been developed for simulating interfacial instabilities,
such as boundary integral methods (e.g. see [7,8,33]), the level set methods (e.g. see [10–13]), volume of fluid
methods (e.g. see [14,15]), front-tracking methods (e.g. see [16,17]), immersed interface methods (e.g. see
[18,19]), phase field methods (e.g. see [20–23]) as well as hybrid methods (e.g. see [24–27]). These methods
are usually coupled with adaptive mesh algorithms to gain more efficiency. When applicable (e.g. for piecewise
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homogeneous problems) boundary integral methods are typically the most accurate methods for simulating
interface motion because the dimensionality of the problem is reduced by one and there are well-developed
accurate and stable discretizations of boundary integral equations. Further, while boundary integral methods
are important in their own right, they can also serve as benchmarks for other more general methods.

A decade ago, Hou, Lowengrub and Shelley (HLS94) significantly advanced the state-of-the-art of bound-
ary integral methods in a study of viscous fingering (the Saffman–Taylor instability) in a Hele–Shaw cell [9], as
well as studies of the motion of vortex sheets with surface tension [28]. The algorithm relied on an analysis of
the equations at small spatial scales (SSD [9]) that identified and removed the source of stiffness introduced by
surface tension. This enabled the use of large time steps and made long-time simulations possible. To further
enhance the efficiency of the algorithm, the fast multipole method [41] was used to evaluate the boundary inte-
grals. Later on, this method was successfully adapted to other physical problems such as microstructural evo-
lution in inhomogeneous elastic domains [34], solid tumor growth [35], crystal growth [36–38], etc. The
resulting body of research has led to many interesting discoveries (e.g. see [29–32] and the review article [33]).

Very recently, Fast and Shelley [39] re-ran the long-time simulation of a Hele–Shaw bubble originally pre-
sented in [9]. By comparing the CPU time with that used in [9], Moore’s law was verified: the computation
power has increased a hundredfold since 1994. For example, it took only 14 h to reproduce the bubble sim-
ulation in [9], roughly 1% of the 50 days required in 1994. Using the same wall time (50 days), Fast and Shelley
ran the simulation 10 times longer and computed an interface using up to N = 32,768 mesh points. The bubble
assumes a complex fingering pattern and is about 4 times larger (in radius) than the one presented in [9]. By
computing farther in time, Fast and Shelley identified the emergence of a new scaling regime in the relation-
ship between the area A(t) and the arclength L(t), which reflects the highly ramified bubble structure.

Complex viscous fingering patterns reflect the Saffman–Taylor instability [5], which occurs when the stabi-
lizing forces (e.g. surface tension) and the destabilizing driving force (e.g. flux or flow injection rate) are not
balanced. For example, in [9,39], a constant flux (constant air injection rate) was used. As suggested by the
linear stability analysis, as the bubble grows, larger and larger wavenumbers become unstable, which leads
to the nonlinear development of a ramified pattern by repeated tip-splitting. Moreover, for a constant flux,
the equivalent bubble radius evolves as dR=dt � R�1, where R is the radius of a circle with the same area
as the bubble. Consequently the velocity of the bubble, dR/dt, decreases as R increases (the bubble grows).
From the perspective of numerical computation, this makes the problem highly challenging. Not only does
the complex fingering pattern require many mesh points to resolve the interface, but also the intrinsic slow
growth (e.g. due to an applied constant injection flux) makes simulations of the evolution to large sized bub-
bles very expensive.

In this paper, we develop a rescaling scheme which enables one to accurately simulate the long-time dynam-
ics of moving interfaces. In this approach, time is scaled such that the bubble size grows exponentially fast in
new time scale, and space is scaled such that the area is constant in the new frame. In the numerical scheme, an
analytical formula is used to determine the overall growth due to flux and is therefore free of discretization
error. The scheme overcomes the intrinsic slow growth mechanism while maintaining the original physics.
Note that very recently we used a specific form of the rescaling scheme to simulate the very long-time dynamics
of compact crystals under specialized growth conditions [37,38]. Here, we present a more general version of
the scaling scheme, and demonstrate the utility of the scheme in accurately simulating highly ramified
Hele–Shaw bubbles over a range of injection fluxes.

By reducing the computation time, this rescaling scheme significantly improves the performance of the
boundary integral method originally developed by Hou et al. [9]. In fact, only minor changes to the original
algorithm are needed. Using a computer with CPU 2.2 GHz Pentium 4 running Linux (similar to the one used
by Fast and Shelley in [39]), we can simulate a high resolution bubble in 6 days that took 50 days for Fast and
Shelley [39] to compute. We then continue the simulation significantly longer in time and identify another
transition in scaling.

We also investigate the long-time interface morphologies under several injection fluxes J / RðtÞp with p = 1,
0 and �1, examine the morphologies and measure the bubble complexity in terms of a relation between area
A(t) and arclength L(t), i.e. AðtÞ � LðtÞc. The relation reflects the underlying physics: when c < 2, the destabi-
lizing driving force (flux) dominates the evolution and leads to ramified (e.g. fractal-like) shapes, the smaller
the power, the more complex the shape; when c = 2, the stabilizing force (surface tension) and destabilizing
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