

Contents lists available at ScienceDirect

Tetrahedron

Divergent synthesis of arylated pyridin-2(1*H*)-one derivatives via metal-catalysed cross-coupling processes

Jamie S. Siddle ^a, Andrei S. Batsanov ^a, Stuart T. Caldwell ^b, Graeme Cooke ^b, Martin R. Bryce ^{a,*}

ARTICLE INFO

Article history: Received 18 March 2010 Received in revised form 30 April 2010 Accepted 28 May 2010 Available online 8 June 2010

Keywords:
Pyridine
Pyridone
Palladium catalysis
Cross-coupling
Suzuki-Miyaura reaction
Arylation
Boronic acid
C—N coupling
Copper catalysis

ABSTRACT

1,5-Di(hetero)arylated-pyridin-2(1*H*)-one derivatives have been readily obtained in good yields starting from 2-fluoro-5-pyridylboronic acid. The sequence comprises three steps: (i) palladium-catalysed Suzuki-Miyaura reaction; (ii) base-catalysed hydrolysis; (iii) copper-catalysed C–N coupling. X-ray crystal structures are reported for selected pyridin-2(1*H*)-one derivatives. These compounds are of interest as new scaffolds for drug discovery.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Functionalised pyridones are of continued interest due to their prevalence in naturally occurring compounds, ^{1–3} bioactive compounds and drugs, ^{4–14} coordination chemistry ¹⁵ and their catalytic acitivity. ¹⁶ New routes for their synthesis and functionalisation continue to be developed. ^{17,18} Metal-catalysed cross-coupling reactions have revolutionised the modification of pyridones ¹⁹ and related heterocycles, with C–C, C–N, C–O bond forming processes now widely utilised. ^{20,21} Notably, Suzuki-Miyaura, Buchwald-Hartwig and Ullmann type reactions have become ubiquitous in the post-functionalisation of heterocycles. Access to *N*-arylpyridones was traditionally achieved using harsh Ullmann-Goldberg conditions ²² resulting in low yields and poor functional group tolerance. Ligand-accelerated and copper-catalysed approaches have led to much milder coupling conditions. ^{23–28} Other methods for *N*-arylating pyridones and related heterocycles include: coppermediated coupling with arylboronic acids, ^{24,29,30} lead-mediated coupling to aryl halides ^{31,32} and HATU-mediated coupling of

arylamides to 4-hydroxyquinazolines.³³ There is interest in sequential metal-catalysed routes to functionalised heteroaryl systems.^{34–39} The aim of the present work was to develop an efficient divergent route to tri-(hetero)aryl systems based on the pyridin-2 (1*H*)-one framework starting from the commercially-available 2-fluoro-5-pyridylboronic acid 1.⁴⁰ We also report related reactions of 2,6-difluoro-5-pyridylboronic acid.

2. Results and discussion

An overview of our methodology is shown in Scheme 1. Suzuki-Miyaura cross-coupling of 2-fluoro-5-pyridylboronic acid **1** with (hetero)aryl bromides **2–4** furnished compounds **5–7** under standard conditions^{41,42} in high isolated yields (Table 1).

Conversion of **5–7** into the 2-pyridone derivatives **8–10** was achieved in high yields by hydrolysis under basic conditions (Table 1).⁴³ Compounds **6** and **7** reacted faster than **5**, presumably due to the electron withdrawing effect of the quinolyl and pyridyl substituents, respectively.

It has previously been observed that the copper-catalysed coupling of 2-pyridones can lead to both C–N and C–O arylated products.^{28,44} To explore this reaction, pyridone derivative **8** was reacted with **11** (Scheme 2). After isolation of the *N*-heteroarylated product **12a** vide infra. a comparison with the crude ¹H NMR

^a Department of Chemistry, Durham University, Durham DH1 3LE, UK

^b Department of Chemistry, WestCHEM, University of Glasgow, Glasgow G12 8QQ, Scotland, UK

^{*} Corresponding author. Tel.: $+44\,$ 191 3342018; e-mail address: m.r.bryce@durham.ac.uk (M.R. Bryce).

Scheme 1. Protocol for the three-step synthesis of 1,5-di(hetero)arylpyridin-2(1H)-one derivatives.

Table 1Synthesis of fluoropyridines **5–7** and pyridones **8–10**

Entry	(het)Ar-Br	Cross-coupling product ^c	Yield ^a (%)	Hydrolysis product ^d	Yield ^b (%)
1	OMe 2	OMe F N 5	98	OMe ON 8	83
2	Br 3	F N 6	89	O N 9	88
3	Br N OMe	N OMe	97	O N 10	92

- ^a The quoted yields are for isolated product after purification by chromatography and/or recrystallisation.
- ^b The quoted yields are for isolated product after acidification and filtration.
- ^c Reagents and conditions: 1 (1.2–1.5 equiv), (hetero)arylbromide (1.0 equiv), Pd(PPh₃)₂Cl₂, Na₂CO₃ (3 equiv, 1 M in H₂O), 1,4-dioxane, reflux, 1–20 h under argon.
- d Reagents and conditions: compound **5, 6** or **7,** KOH (1 M in H_2O), 1,4-dioxane, reflux, 24–66 h.

Scheme 2. Coupling of 8 and 11. For conditions see Table 2.

spectrum and GC—MS traces confirmed that **12a** was the major product. The other product, presumed to be **12b**, could not be obtained pure. An initial screening was undertaken utilising commonly employed conditions and ligands for the C—N coupling of 2-pyridones, 2-pyridazinones and NH-heterocycles (Table 2). Using 1,10-phenanthroline (1,10-phen) with conditions used previously for the N-heteroarylation of benzimidazole and other NH-heterocycles,³⁹ conversion was complete after 24 h with a 79:21 ratio of **12a:12b** (Table 2, entry 1). Buchwald's 4,7-dimethoxy-1,10-phenanthroline ligand has proved to be effective for the copper-catalysed N-arylation of 2-pyridone;²⁸ however, the high cost of the ligand led us to try cheaper alternatives. Whilst keeping the same base (Cs₂CO₃), the solvent was changed to dioxane, 8-hydroxyquinoline (8-HQ) was employed as the ligand and PEG was added as a solid—liquid transfer catalyst.⁴⁵ However, despite 8-HQ being

previously used to *N*-arylated pyridones⁴⁴ and pyridazinones,²⁷ these conditions resulted in a low conversion and a reduced ratio

Table 2Screening of conditions for arylation of **8** with **11**

Entry	Cu source	Ligand	Base	Solvent	GC-MS analysis 11:12a:12b
1	CuI	1,10-phen	Cs ₂ CO ₃	DMF	0:79:21
2	CuI	8-HQ	Cs_2CO_3	dioxane ^a	69:20:11
3	CuI	DMCDA	K_2CO_3	toluene	0:95:5
4	CuI	DMCDA	K_2CO_3	DMSO	3:97:0
5	Cu ₂ O	Chxn-Py-Al	Cs_2CO_3	MeCN	39:50:11

Conditions and reagents: **8** (0.735 mmol), **11** (0.700 mmol), Cu source (0.07 mmol), ligand (0.140 mmol), base (1.40 mmol), anhydrous solvent (2 mL), $100\,^{\circ}$ C, 36 h under argon.

^a PEG (43 mg) additive used.

Download English Version:

https://daneshyari.com/en/article/5221412

Download Persian Version:

https://daneshyari.com/article/5221412

<u>Daneshyari.com</u>