
FISEVIER

Contents lists available at ScienceDirect

Tetrahedron

A new series of rod-like conjugated molecules with a pyrazine or a bipyrazine core. Synthesis and light emitting properties

Nordine Hebbar, Catherine Fiol-Petit, Yvan Ramondenc, Gérard Plé, Nelly Plé*

Laboratoire de Chimie Organique Fine et Hétérocyclique, UMR 6014 CNRS, Université et INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France

ARTICLE INFO

Article history: Received 16 December 2010 Received in revised form 14 January 2011 Accepted 22 January 2011 Available online 28 January 2011

Keywords:
Pyrazine
Bipyrazine
Metallation
Cross-coupling reactions
Fluorescence

ABSTRACT

In this paper, we describe the synthesis of a wide range of new rod-like conjugated molecules with a pyrazine or a bipyrazine core connected to electron acceptor (A) or donor (D) groups through π -conjugated bridges as transmitters for the internal charge transfer (ICT). The key steps of the synthesis involve metallation and subsequent transmetallation of 2-chloropyrazine derivatives followed by Sonogashira or Negishi cross-coupling reactions. The bipyrazine core was obtained with a Stille cross-coupling reaction between the 2-chloro-6-tributylstannylpyrazine and the 2-chloro-6-iodopyrazine. Functionalization of the 6,6'-dichloro-2,2'-bipyrazine was performed by metallation, transmetallation and cross-coupling reactions. The light emitting properties of the so obtained molecules are then investigated in terms of absorption and emission spectra.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Organic materials with extended π -extended conjugation along their backbone have received high interest owing to their applications in a wide range of electronic and optoelectronic devices.¹ Among them, rod-like chromophores with a planar and rigid π -conjugated system could be considered as molecular wires for electron and energy transfer² and also as materials in organic photo- and electro-luminescent devices. Another interest of such structures is their potential two-photon absorption (TPA) properties,³ defined by their cross sections (σ_{TPA}), which could find applications in number of new areas, including the fluorescence imaging of biological samples,⁴ optical limiting,⁵ photodynamic therapy,⁶ the three-dimensional optical data storage⁷ and microfabrication.⁸ The most extensively investigated structural motifs are donor-bridge-acceptor. The structure-property correlations of such chromophores reveal that the cross section σ_{TPA} increases with the donor/acceptor strength, conjugation length and planarity of the π -centre. 2b,c

Previously, we have reported the synthesis of various linear dipolar $D-\pi$ -A or quadripolar $A-\pi$ -A compounds with a pyrazine moiety connected to a donor or and acceptor group through an oligoene chain as a bridge (type I).⁹

We describe herein the synthesis of various new conjugated compounds with a pyrazine or a bipyrazine core connected to electron acceptor (A) or donor (D) groups through π -conjugated bridges as transmitters for the internal charge transfer (ICT) (Scheme 1). These compounds with such a scaffold belong to dipolar structures with D- π -A systems (type II) or D- π -A- π -A systems (type III) and to quadrupolar structures with D- π -A- π -D system (type IV) where A is a π -deficient heterocycle unit (pyrazine or bipyrazine) (Scheme 1).

Compounds of type III with a $D-\pi$ - $A-\pi$ -A system could be compared to compounds of type I or II $(D-\pi$ -A), allowing to appreciate for compounds of type III the structure–properties relationships due to the presence of a second arm at the C_6 position on the pyrazine ring as well as the nature of the π -conjugated linkers (alkene or alkyne units or polyenic chain). Chromophores of type IV have a centrosymmetric structure with a bipyrazine core and a $D-\pi$ - $A-\pi$ -D system, this kind of compounds is generally known to exhibit better two-photon activity (TPA) than the $A-\pi$ - $D-\pi$ -A systems.

^{*} Corresponding author. E-mail address: nelly.ple@insa-rouen.fr (N. Plé).

2. Results and discussion

2.1. Synthesis

It is well-known that amino groups are efficient electron-donating groups to induce large Stokes shifts in $D-\pi$ -A systems because of internal charge transfer (ICT) states. Replacing dialkyl amino groups by a cyclic tetrahydroquinoline group would be one way to shift the absorption and emission to longer wavelengths. For this reason we chose to introduce the julolidinyl group because of its high electron-releasing effect.

Scheme 1

A preliminary synthetic way has been tested to introduce a julolidinylethynyl or a julolidinylvinyl group at the C_6 position of the 2-chloropyrazine (Scheme 2).

Scheme 2.

The 2-chloro-6-julolidinylethynylpyrazine 1 could be obtained either by a Sonogashira cross-coupling reaction between the julo-lidinylacetylene and the 2-chloro-6-iodopyrazine or by a Neghishi cross-coupling reaction with the organic zinc of the julolidinylacetylene and the 2-chloro-6-iodopyrazine. The two synthetic ways

have been tested; the last one has given the better yield and is reported herein.

In a first time it was necessary to synthesize the julolidinylacetylene **5**. This compound was obtained in two steps from the formyljulolidine **3** as starting material, which was prepared by Vilsmeier reaction of julolidine¹¹ (Scheme 3).

Scheme 3.

The formyljulolidine **3** was reacted with 1.6 equiv of chloromethyltriphenylphosphonium chloride according to the Wittig reaction conditions and with 1.5 equiv of n-butyllithium as base, leading to the 1-chloro-2-julolidinylethylenes **4a** and **4b** as a mixture of isomers Z and E (35:65) with a very good yield (99%). Further dehydrohalogenation carried out with n-butyllithium in THF at low temperature gave quantitatively the expected compound **5**.

The pyrazine derivative **1** was synthesized through the organo zinc intermediate **5a**, obtained by deprotonation of **5** with *n*-butyllithium followed by reaction with zinc chloride. The Negishi coupling reaction of **5a** with 2-chloro-6-iodopyrazine afforded **1** in 71% yield (Scheme 4).

Various attempts have been performed to synthesize compound **2**, the vinylene analogous of **1**. The Stille coupling reactions with stannylpyrazine and 1-chloro-2-julolidinylethylene have failed as well as catalytic reduction of **1** with the Lindlar catalyst. Another way has been tested using the hydrozirconation reaction with the Schwartz's reagent. The acetylenic compound **1** was reacted with 1.1 equiv of Cp₂ZrHCl in THF at room temperature, then a transmetallation of zirconium by zinc was performed by the action of zinc chloride and the Negishi reaction was carried out with 2-chloro-6-iodopyrazine. Under these conditions, the vinylene compound **2** was obtained in low yield (10%) besides the acetylenic compound **1** as major product (16%) (Scheme 5).

In order to appreciate the influence on the optical properties of the length and of the nature of the conjugated chain at the C_6 and C_3 positions of pyrazine ring, we have synthesized three other compounds of type IIIA or IIIB with a $D-\pi$ - $A-\pi$ -A system. These compounds were obtained from compounds 1 and 2 using metallation at the C_3 position, induced by the chlorine atom as *ortho*-directing group, followed by transmetallation and cross-coupling reactions (Scheme 6).

- a) 1.2 eq. n-BuLi/THF/-78 °C/30 min
- b) 3 eq. ZnCl₂/THF/-78 °C to r.t.
- c) 1 eq. 2-chloro-6-iodopyrazine/ Pd(PPh $_3$) $_4$ / 5% mol/THF/r.t./4 h

Download English Version:

https://daneshyari.com/en/article/5221446

Download Persian Version:

https://daneshyari.com/article/5221446

<u>Daneshyari.com</u>