Tetrahedron 67 (2011) 10045-10052

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

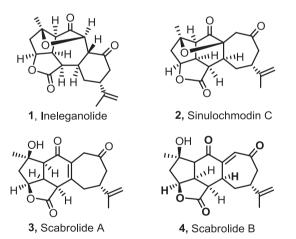
Biomimetic syntheses of ineleganolide and sinulochmodin C from 5-episinuleptolide via sequences of transannular Michael reactions

Yi Li, Gerald Pattenden*

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK

ARTICLE INFO

Article history: Received 29 July 2011 Received in revised form 11 September 2011 Accepted 12 September 2011 Available online 1 October 2011


Keywords: Norcembranoid Biomimetic synthesis Transannular cyclisation Ineleganolide Sinulochmodin C

ABSTRACT

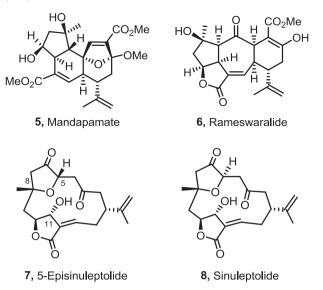
Treatment of a solution of the macrocyclic norcembranoid **7** with lithium hexamethyldisilazide in THF at -78 °C to 0 °C, leads to the polycyclic norcembranoids ineleganolide **1** and sinulochmodin C (**2**) (65%), which are found in the corals *Sinularia inelegans* and *Sinularia lochmodes*, respectively. The conversions are believed to be biomimetic, and occur by successive transannular Michael reactions in **7**. Under different temperature conditions the novel polycycle **30** is the main product, alongside small quantities of **1** and **2**. The polycycle **30** is possibly produced from ineleganolide **1**, following a reverse oxy-Michael reaction and two successive aldol reactions. The significance of the synthesis of ineleganolide **1**, sinulochmodin C (**2**) and the structure **30** from 5-episinuleptolide **7**, to the likely biosynthesis of the related norcembranoids scabrolide A (**3**), scabrolide B (**4**) and horiolide **31** found in *Sinularia* sp. is discussed. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

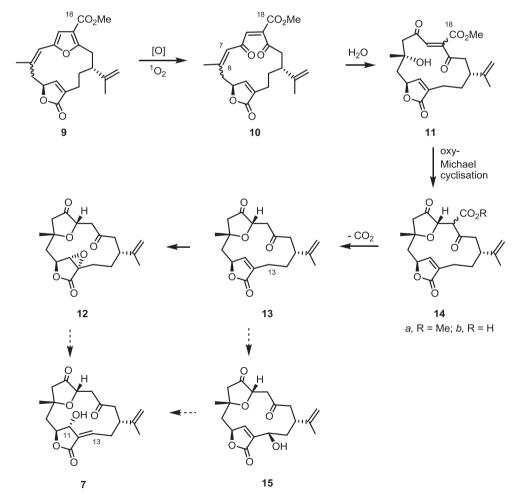
Ineleganolide 1 and sinulochmodin C (2) are members of a group of novel polycyclic norcembranoids, which are found exclusively in soft corals of the genus Sinularia. Ineleganolide 1 was first reported in 1999 and was isolated from the Taiwanese coral Sinularia inelegans.¹ It was later found alongside scabrolide A (**3**) and scabrolide B (4) in Sinularia scabra,² also from Taiwan.³ Sinculochmodin C (2) was reported more recently, in 2005, from Sinularia lochmodes, collected off the southernmost tip of Taiwan.⁴ Sinulochmodin C (2) and the scabrolides 3 and 4 have structures, which are based on the linear fusion of five-, six- and sevenmembered carbocyclic rings linked to a five-ring lactone. By contrast, ineleganolide 1 has an angular fusion of five-, seven- and sixmembered carbocyclic rings, linked to the same five-ring lactone. However, both ineleganolide 1 and sinulochmodin C (2) also feature an interesting five-ring ether bridge linking two of the carbocyclic rings in their structures, which is not found in the scabrolides **3** and **4**.⁵ The norcembranoids **1**, **2**, **3** and **4** have a number of structural features in common with the perhaps better-known C₂₀-polycyclic cembranoid diterpenes mandapamate 5^6 and rameswaralide 6^7 , which are also found in Sinularia sp.

Soft corals dominate the biomass in coral reef environments, and *Sinularia* sp. are particularly abundant in Indo Pacific reefs. Many cembranoid metabolites isolated from *Sinularia* sp., including the metabolites **1–6**, have been found to exhibit a wide range of biological activities, e.g., antimicrobial, anti-inflammatory and cytotoxicity. Indeed, these features have been a significant motivation for studies of their synthesis, as possible leads for new therapeutic agents.⁸ It is surprising, therefore, that no synthetic studies directed towards the polycyclic norcembranoids **1–4** and other members of this intriguing group of biologically active compounds have been forthcoming. By contrast, synthetic investigations towards the polycyclic cembranoid rameswaralide **6**⁹ and its relatives,¹⁰ some of which have been based on biosynthesis speculation, have been

 $[\]ast$ Corresponding author. Tel.: +44 115 951 3530; e-mail address: gp@notting-ham.ac.uk (G. Pattenden).


^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.09.040

published in the recent literature.¹¹ In this paper, we describe concise syntheses of ineleganolide **1** and sinulochmodin C (**2**), based on our proposal that they are both biosynthesised in *Sinularia* sp., from a common 14-membered macrocyclic norcembranoid congener, by unique sequences of transannular anionic carbon-to-carbon bond forming reactions.


2. Biosynthesis speculation and retrosynthetic analysis

Ineleganolide **1**, sinulochmodin C (**2**) and the scabrolides **3** and **4** co-occur with some macrocyclic 3(2H)-furanone-based norcembranoids in *Sinularia* sp., the most prominent of which is 5-episinuleptolide **7**. 5-Episinuleptolide **7** was the first norcembranoid to be identified in nature, and was isolated from *Sinularia leptoclados* collected off the coast of Magnetic Island, Australia by Bowden et al. in 1978.¹² In more recent years a number of diastereoisomers of **7**, i.e., epimers at C5, C8 or C11, e.g., 'sinuleptolide' **8**,¹³ have also been found in several different species of *Sinularia*.^{14,15}

5-Episinuleptolide **7**, and its naturally occurring diastereoisomers, are related biogenetically to the ubiquitous C_{20} -macrocyclic cembranoid diterpenes present in corals, by lacking the C18 carbon substituent (cembranoid numbering) in the latter structures. By far the largest group of C_{20} -macrocyclic cembranoids to be characterised are furanobutenolide-based compounds,^{16,17} e.g., deoxypukalide **9**,¹⁸ and these metabolites would seem to be the most obvious precursors to the 3(2*H*)-furanone-based macrocyclic norcembranoids, viz. **7**, in vivo. We have proposed that the loss of the C18 carbon substituent in the C_{20} -furanocembranoids, viz. **9**, leading to macrocyclic

norcembranoids in *Sinularia*, originates from initial oxidation and hydrolysis of the alkenylfuran unit in **9**, triggered by sunlight—generated singlet oxygen (Scheme 1).¹⁹ Thus, in one process oxidative cleavage of the furan ring in **9**, followed by facial-selective hydration of the C7–C8 alkene bond in the resulting dienedione **10** would first lead to the hydroxyl-substituted enedione **11**. An intramolecular oxy-Michael type cyclisation within **11** would next lead to formation of

Scheme 1. Proposal for the origin of 5-episinuleptolide 7 from the furanobutenolide-based cembranoid 9 involving loss of the C18 CO₂Me substituent in the 3(2*H*)-furanone intermediate 14a, followed by oxidation of the resulting metabolite 13 (to 12 and/or 15) and rearrangement.

Download English Version:

https://daneshyari.com/en/article/5221554

Download Persian Version:

https://daneshyari.com/article/5221554

Daneshyari.com