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Abstract

The recently devised one-dimensional parabolic spline method (PSM) for efficient, conservative, and monotonic remap-
ping is introduced into the semi-Lagrangian inherently-conserving and efficient (SLICE) scheme for transport problems in
multi-dimensions. To ensure mass conservation, an integral form of the transport equation is used rather than the differ-
ential form of classical semi-Lagrangian schemes. Integrals within the SLICE scheme are computed using multiple sweeps
of PSM along flow-dependent cascade directions to avoid the large timestep-dependent splitting errors associated with tra-
ditional fixed-direction splitting. Accuracy of the overall scheme, including at large timestep, is demonstrated using two-
dimensional test problems in both Cartesian and spherical geometries and compared with that of the piecewise parabolic
method (PPM) applied within the same SLICE framework.
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1. Introduction

Semi-Lagrangian (SL) schemes [1] are widely used in atmospheric modelling due to their improved stability
compared to their Eulerian counterparts, and to the substantial computational savings concomitant with using
large timesteps. However, unlike some Eulerian schemes, the lack of mass conservation with SL schemes can
be problematic for relatively long-time integrations, such as those for climate studies [2].

The lack of formal mass conservation in SL schemes has been dealt with by either: (i) applying a posteriori
corrections, whereby the original global mass is restored by redistributing the deficit/surplus to minimally
change the solution [3] (similar approaches have also been used for non-conservative Eulerian schemes [4]);
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or (ii) using inherently conserving schemes, whereby the conservation constraint is an integral part of the
scheme, i.e. conservative remapping [5–16]. Such schemes are finite/control-volume methods, in that they
are all based on estimating integrals of the conserved quantity over a deformed Lagrangian volume (see
Section 2 for details). Recently, Lauritzen [17] has given an analysis of some of these schemes.

Although inherently conservative SL schemes are mathematically well formulated, they tend to be more
expensive and difficult to generalise to higher dimensions without a substantial increase in computational cost.
Therefore, much of the research in this area has been centered on how to remap a multi-dimensional field in an
efficient way to allow the flexibility of using higher-order schemes but without a prohibitive computational
overhead. To overcome these conflicting criteria, SLICE [18,19] combines a piecewise cubic method
(PCM), which is a higher-order alternative to the popular piecewise parabolic method (PPM [20]), with the
cascade (flow-dependent decomposition) approach [21]. Building on the previous development of this scheme,
a more efficient variant of SLICE, based on the parabolic spline method (PSM) [22], is presented herein. An
advantage of PSM is that of all piecewise parabolic functions that satisfy a given mass (average density) dis-
tribution, such as the one used by PPM, PSM is an optimal reconstruction since it possesses the minimum
norm (or curvature) and best approximation properties [22]. Furthermore, an operation count shows that
PSM is 60% more efficient than PPM, and its monotonic filter damps less than PPM’s.

The purpose of the present work is to: (i) outline how the one-dimensional (1D) PSM algorithm (and also
the PPM algorithm) can be exploited in multi-dimensions using the SLICE cascade directional decomposition
strategy; and (ii) demonstrate that PSM’s 1D accuracy advantages over PPM also hold for typical 2D test
problems of the literature in both Cartesian and spherical geometries.

The rest of the paper is organised as follows: Section 2 outlines the strategy for incorporating the 1D PSM
[22] and PPM [20] remappings into the SLICE cascade framework; in Section 3 results of several illustrative
tests in Cartesian and spherical geometry are given; and conclusions are summarised in Section 4.

2. 2D remapping with SLICE

This section briefly outlines how the 1D PSM [22] and PPM [20] remappings can be efficiently incorporated
into a general strategy to solve higher dimensional (here 2D) problems by using the SLICE methodology
[18,19].

2.1. 2D advective transport

Consider (see e.g. [11]) passive 2D advective transport of a scalar quantity q governed, in the absence of
sources and sinks, by

oq
ot
þr � ðquÞ ¼ 0; ð2:1Þ

where q is the density (amount of scalar per unit volume) of the transported quantity, and u and t are the
transporting velocity field and time, respectively. Let dV be a material volume (strictly an area here as only
two dimensions are considered) that moves with the fluid. Then an equivalent integral form of the conserva-
tion equation (2.1) is
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where D/Dt is the total derivative following the fluid. Integrating (2.2) from time t0 to time t1 gives

M1 ¼ M0; ð2:3Þ
where M1 �

R
dV1

q dV, M0 �
R

dV0
q dV, and dV1 is the fluid volume at time t1 that corresponds to the vol-

ume dV0 at time t0. Now let dV1 be a known grid volume, fixed in time, with q1 being the associated value of
the scalar averaged over this volume, so that M1 ¼ q1dV1. In this context dV1 is then an Eulerian control
volume (ECV) whereas dV0 is its corresponding Lagrangian control volume (LCV). Then the problem
simplifies to computing the discrete integral M0, which is a remapping of a given average field �q at time t0

on regular ECV’s to irregular LCV’s.
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