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a b s t r a c t

We consider a new Cartesian grid method for direct numerical simulations of fully coupled
interaction of incompressible flow and spherical particles, based on a discontinuous exten-
sion of the pressure Poisson equation (PPE) across particle boundaries. We give a complete
mathematical description of the boundary-integral treatment of the discontinuous PPE
that includes the derivation of a new pressure boundary condition for accelerating bound-
aries and the solution of the system of boundary integral equations using spherical har-
monics expansions. The model was validated with the standard test for finite Reynolds
number flow around a sphere and with a novel test using the analytical solution for the
Stokes flow past two adjacent spheres moving with the same velocity. The model capability
and numerical efficiency was demonstrated with simulations for the collective settling of
groups of 64–512 particles.

Published by Elsevier Inc.

1. Introduction

We consider a numerical modeling framework for finite Reynolds number particle-laden flows where the fluid phase is
resolved at sub-particle scales through direct solution of the Navier–Stokes equations. The hydrodynamic forces acting on
the particles are then computed by integration of the resolved pressure and viscous stresses over the particle surface. Resolv-
ing the boundary layers at the particle surface is usually achieved by using boundary-fitting grids with a grid step that
decreases towards the boundary (e.g., [13]). While this technique is optimal for single particle simulations the evolving
geometry in simulations with a large number of mobile particles requires frequent mesh re-generation [10]. 3D fluid–
particle simulations requiring a minimal frequency of remeshing may be achieved using state-of-the-art moving mesh
techniques [14]. For the purpose of such large-scale simulations, our goal here is to develop an inexpensive hydrodynamic
solver based on fixed Cartesian grids that gives acceptable predictions for the hydrodynamic particle forces with a minimum
number of grid points per particle diameter. Such solvers have demonstrated recently (e.g., [23]) that flows around spheres
for particle Reynolds numbers in the range 10 < Re < 100 can be modeled with as little as 16–32 grid points per diameter.
Similarly, our focus here will be on the performance and the fidelity of the proposed numerical scheme at such low resolu-
tions and low Reynolds numbers. The work is motivated by marine sediment transport applications where the particle
Reynolds number seldom exceeds a few hundred.

The pressure field is the main difficulty in solving the incompressible Navier–Stokes equations in a domain with moving
particle boundaries because the motion of each particle is felt instantaneously through the entire pressure field and the
remaining particles. Our approach to solve this complicated N-body pressure problem belongs to a group of fictitious
domain/Cartesian grid methods where the boundary value problem (BVP) is simplified by including particle interiors in
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an extended model domain and modifying the equations using some device that represents the effect of the removed bound-
ary. The modified equations can then be solved on a uniform Cartesian grid but the price for this computational advantage is
that one has to deal with discontinuous solutions. In the immersed boundary method of Peskin [20] for incompressible flows
interacting with elastic membranes, the boundary moves with the local velocity and exerts a singular force on the fluid. Sim-
ilarly, in the virtual boundary method [7] the effect of boundaries is modeled as a drag force distributed on the boundary
surface and proportional to the local fluid velocity. The ad hoc force is added to the Navier–Stokes equations and the latter
are solved over the entire domain, including the particle interior. In both Peskin [20] and Goldstein et al. [7] the first order
spatial discretization of the singular force results in overly smoothed solution discontinuities. Furthermore, the actual fluid
surface force is not known in advance but must be obtained as part of the solution and generally depends on the far field flow
conditions. Another fictitious domain method is the distributed Lagrange multiplier method [6] where a fictitious stress is
added in order to maintain the interior fluid in solid body rotation. The unknown stresses are obtained as part of the solution
of a weak variational formulation of the combined fluid–particle momentum equation that permits certain solution
discontinuities.

Green function methods can also be used if the Navier–Stokes equations are ‘‘linearized’’ by treating the non-linear advec-
tion as a given source term in the momentum equation [3]. The resulting Stokes-like linear PDEs for velocity and pressure
have discontinuities across particle boundaries in the form of single and/or double layer potentials [5] that must be deter-
mined by solving boundary integral equations. In electrostatic potential applications, such boundary integral equations are
usually solved with the boundary element method [17] and an accelerating scheme such as the fast multipole method [9].
Our boundary integral method differs in several important aspects. First, while we do extend the pressure solution across
particle boundaries, the momentum equation is solved solely outside the particles; updating the velocity field with explicit
time integration is then straightforward once the pressure field is known. The solution of the discontinuous Poisson equation
for pressure is sought in terms of a single layer potential with a continuous pressure and a discontinuous pressure gradient
across the boundary. Second, we solve the pressure boundary integral equation by expanding the unknown surface density
of the single layer potential in surface spherical harmonics rather than Boundary Element interpolating functions. The
expansion reduces the boundary integral equation to a diagonally dominant linear system for the harmonic coefficients,
which is solved with Gauss–Seidel iterations. Once the single layer density is determined, the pressure at every point can
be computed by evaluating the single layer potential integrals. We use a more efficient method proposed by Mayo [18]
where the computed pressure discontinuities are used to correct the finite-difference approximation of the Laplacian for fi-
nite-difference stencils crossing the boundary. The resulting regularized discrete Poisson equation for pressure can then be
solved very efficiently with fast Poisson solvers. The computational advantage of such fast Poisson solvers is the main moti-
vation for the present fictitious domain approach based on Cartesian grids.

The emphasis here is on the boundary integral method for the pressure. Thus, the numerical treatment of the momentum
equation is kept as simple as possible and is based on simple second order finite-differences. An important desirable aspect
in the modeling of particle-laden flows is the ability to simulate the close hydrodynamic interaction of particles. In this pa-
per, we compare our numerical solution for a ‘‘rigid pair’’ of spheres falling parallel to the line of centers with the corre-
sponding creeping flow analytical solution [12] for the drag as a function of the particle separation distance; no such
rigorous tests of hydrodynamic particle interaction appear to have been performed with other existing fluid–particle solvers.
The more difficult case of hydrodynamic interaction that leads to mechanical contact is beyond the present scope of intro-
ducing the pressure boundary integral method.

2. Model formulation

Consider NP spherical particles of radius a (Fig. 1), centered at r = qj (j = 1,NP) inside a rectangular computational box and
having translational and rotational velocities Uj(t) and Xj(t). Here VðtÞ will denote the space occupied by the fluid at time t
and V will denote the volume of the entire computational box. The fluid velocity u = u(r) will be determined by solving the
pressure-Poisson formulation of the Navier–Stokes equations:

ou
ot
þ u � ru ¼ �rp

q
þ Bþ mDu; r 2 VðtÞ; ð1aÞ

Dp ¼ �qr � ðu � ruÞ; r 2 VðtÞ; ð1bÞ
where B is a body force, m is the viscosity and q density. On the jth particle surface the no-slip boundary conditions implies:

u ¼ Uj þ aXj � ir; jr� qjj ¼ a; ð2aÞ

where ir � (sinhcos/, sinhsin /, cosh) is the local (with respect to the center of particle j) unit radial vector and (h,/) are the
spherical coordinates on the particle surface (Fig. 1). Sani and Gresho [8] showed that the proper boundary condition for (1b)
is the Neumann boundary condition for pressure given by the normal component of the momentum equation evaluated on
the boundary. Thus, evaluating the radial component of (1a) on the particle surface and using (2a) yields the following
Neumann boundary condition for pressure:
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