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Abstract

Under a generalized coordinate transformation with arbitrary grid velocity, the gas-kinetic BGK equation is reformu-
lated in a moving frame of reference. Then, a unified conservative gas-kinetic scheme is developed for the viscous flow com-
putation in the moving grid system in the Eulerian space. Due to the coupling between the grid velocity and the overall
solution algorithm, the Eulerian and Lagrangian methods become two limiting cases in the current gas-kinetic method.
A fully conservative formulation can be obtained even in the Lagrangian limit. The moving grid method extends the appli-
cable regime of the gas-kinetic scheme to the flows with free surface or moving boundaries, such as dam break problem and
airfoil oscillations. In order to further increase the robustness of the moving grid method, similar to the arbitrary Lagrang-
ian–Eulerian (ALE) method, a conservative adaptive grid technique is also implemented in the current method to redistrib-
ute the mesh concentration to the rapid variational flow region and remedy the distorted moving mesh due to the coupling
between grid velocity and fluid speed. Many numerical examples from incompressible flow to the supersonic shock interac-
tion are presented. The test cases verify the accuracy and robustness of the unified moving grid gas-kinetic method.
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1. Introduction

There are two different coordinate system for description of fluid motion: the Eulerian one describes fluid
motion at fixed locations, and the Lagrangian one follows fluid particles. Considerable progress has been
made over the past two decades on developing computational fluid dynamics (CFD) methods based on the
above two coordinates system. As the unsteady flow calculations with moving boundaries and interfaces
become important, such as found in the flutter simulation of wings, turbomachinery blades, and multiphase
flow, the development of fast and reliable methods for dynamically deforming computational domain is
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required [17]. This research will help significantly the industry, such as the aerodynamic shape optimization
studies and the detonative chemical reactive flow computation.

There are many moving mesh methods in the literature. One example is the static mesh movement method,
where the new mesh is generated at each time step according to certain monitor function and the flow variables
are interpolated into the newly generated mesh. Then, the flow update through the cell interface fluxes is done
on a static mesh. In order to increase the accuracy, the mesh can be properly adapted [9]. Another example is
the dynamical one, where the mesh is moving according to certain velocity. At the same time, the fluid vari-
ables are updated inside each moving control volume within a time step. The second method is mostly used to
track the interface location, to account for changes in the interface topology, and to resolve small-scale struc-
ture at singular point. The most famous one for this dynamical mesh moving method is the Lagrangian
method. Through the research in the past decades, it has been well recognized that the Lagrangian method
is always associated with the mesh tangling once the fluid velocity is used as the mesh moving velocity. In
order to avoid severe mesh distortion in the Lagrangian method, many techniques have been developed.
The widely used one at present time is the arbitrary Lagrangian–Eulerian (ALE) technique, which uses con-
tinuous re-zoning and re-mapping from Lagrangian to the Eulerian grid. Unfortunately, this process requires
interpolations of geometry and flow variables [14]. In aerospace engineering, in order to re-distribute the
boundary deformation dynamically into the whole computational domain a spring network approach has
been usually used to determine the motion of the mesh point, such as those around a deforming airfoil
[2,16,23]. Here, a smoothing global operator is applied in maintaining grid smoothness and grid angles. This
process is always associated with iterative methods resembling an elliptic grid generator. With a general trans-
formation between the physical (t,x,y) and the computational space (k,n,g), the Navier–Stokes equations can
be written in a conservative form [7]. Many numerical schemes have been developed based on the above for-
mulation for the Navier–Stokes equations directly, such as in the cases of fluid-structure interaction and fluid
induced vibration. Instead of constructing an exact Riemann solver, an efficient approximate Riemann solu-
tion has been obtained [6], where the grid velocity is explicitly used in the wave decomposition. Even without
using conservative governing equations explicitly, many moving mesh methods for incompressible Navier–
Stokes equations, hyperbolic system, or chemical reactive flow, have also been developed with detailed con-
sideration of numerical cell deformation [20,4,1].

Recently, a successful moving mesh method for inviscid Euler equations has been developed by Hui et al.
[10] on the target of crisp capturing of slip line. In this unified coordinate method, with a prescribed grid veloc-
ity, the inviscid flow equations are written in a conservative form in the computational domain (k,n,g), as well
as the geometric conservation laws which control the mesh deformation. The most distinguishable merit in the
unified coordinate method is that the fluid equations and geometric evolution equations are written in a com-
bined system, which is different from the fluid equations alone [7]. Furthermore, due to the coupling of the
fluid and geometric system, for the first time the multi-dimensional Lagrangian gas dynamic equations have
been written in a conservative form. As a consequence, theoretically it has been shown that the multi-dimen-
sional Lagrangian system is only weakly hyperbolic. Numerically, in the unified coordinate system the fluid
and geometric variables can be updated simultaneously. In order to overcome the disadvantage in the
Lagrangian method, in the unified coordinate system the grid velocity is set to be hq, where q = (U,V) is
the fluid velocity and h is a parameter which is to be determined by conditions, such as the mesh alignment
with the slip surface, or keeping grid angle during the mesh movement. Therefore, the grid velocity can be
changed locally according to the value of h. In a recent paper [11], the grid velocity has been further general-
ized to (hU,kV), where h and k are two parameters to be determined. The great achievement of the unified
coordinate method is that the numerical diffusion across the slip line is reduced to a minimum with the crisp
capturing of contact discontinuity. However, in the complicated flow movement, in order to avoid the severe
mesh distortion, the constraints, such as keeping mesh orthogonality and grid angles, have to be used in the
unified coordinate system. As a result, in most cases, the constraint automatically enforces the mesh velocity
being zero, such as in the case of gas implosion inside a square. Otherwise, for flow problems with circulations,
any mesh movement method, once the grid speed is coupled with the fluid velocity, will distort the mesh even-
tually and stop the computation. Also, in order to capture the slip line, the unified method is mainly focusing
on the solution of the Euler equations. For the viscous flow, the equations, see Appendix, become much more
complicated in a unified coordinate system.
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