Tetrahedron 66 (2010) 4434-4440

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis and reactivity studies of α , α -difluoromethylphosphinates

Isabelle Abrunhosa-Thomas, Laëtitia Coudray, Jean-Luc Montchamp*

Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, TX 76129, USA

ARTICLE INFO

Article history: Received 1 March 2010 Received in revised form 5 April 2010 Accepted 6 April 2010 Available online 10 April 2010

Keywords: Phosphinate Phosphonate Fluorine Conformational analysis Pyrophosphate analogs

1. Introduction

 α -Fluorophosphorus compounds have gained popularity as potential pharmacophores. In the case of phosphonates, the fluorine substituent(s) is known to modulate the p K_a of the phosphonic acid group, sometimes improving the mimicry of a natural phosphate monoester, and the inhibitory potency of the resulting analog.¹ α , α -Difluorophosphinates have been much less studied, and in their case, the effect of fluorine on the p K_a is unimportant since the phosphinic monoacids are always deprotonated at physiological pH. Nonetheless, the CF₂ moiety is a known mimic of an oxygen atom. Using our radical hydrophosphinylation reaction (NaH₂PO₂, Et₃B/air)² Piettre and coworkers have pioneered the synthesis of α , α -difluorophosphinates, from 1,1-difluoro-2,2-disubstituted olefins (Eq. 1).³

NaO-
$$\mathbb{R}_{H}^{O}$$
 \mathbb{R}_{2}^{H} \mathbb{R}_{2}^{O} \mathbb{R}_{2}^{O}

Fifteen years ago, Hall and co-workers reported the only example we could find of the base-promoted alkylation of a difluoromethylp hosphinate $RP(O)(OEt)CF_2H$, as well as its subsequent elaboration into

ABSTRACT

The preparation and reactivity of some α, α -difluorophosphinates are investigated. Alkylation of *H*-phosphinates with LiHMDS and ClCF₂H gives the corresponding α, α -difluorophosphinates in good yield. Deprotonation of these reagents with alkyllithium or LDA is then studied. Subtle electronic effects translate into significant differences in the deprotonation/alkylation of the two 'Ciba-Geigy reagents' (EtO)₂CRP(O)(OEt)H (R=H, Me). On the other hand, attempted methylation of difluoromethyl-octyl-phosphinic acid butyl ester resulted in the exclusive alkylation of the octyl chain. Finally, reaction with carbonyl compounds results in the formation of 1,1-difluoro-2-phosphinoyl compounds.

© 2010 Elsevier Ltd. All rights reserved.

Tetrahedror

a GABA analog (Scheme 1).⁴ Two GABA analogs H₂NCH₂CH(X)CH₂P (O)(OH)CF₂H (X=H, OH) were also studied, but these were less potent agonists in a GABA_B binding assay than the corresponding non-fluorinated methyl phosphinate by a factor of ~3–5.⁴ Phosphonate H₂N (CH₂)₃P(O)(OH)₂ behaves instead as an antagonist.⁴ The deprotection of the acetal followed by functionalization was also reported in this work (Scheme 1). A few years ago, we reported a general alkylation of *H*-phosphinates, ⁵ Herein, we report a study of the alkylation of these and other precursors, which expands upon the Hall precedent.⁴

$$\underbrace{\substack{\text{EtO}\\\text{EtO}}}_{\text{EtO}} \underbrace{\stackrel{O}{\underset{\text{CF}_2\text{H}}}}_{\text{CF}_2\text{H}} \underbrace{\xrightarrow{1)\text{BuLi}}_{2) n \cdot \text{PrBr}}} \underbrace{\underset{\text{EtO}}{\overset{P}{\underset{\text{FtO}}}} \underbrace{\stackrel{O}{\underset{\text{FtO}}}_{\text{CF}_2\text{Pr}} \underbrace{\underset{\text{EtO}}{\overset{TMSCI}}_{\text{EtOH, CH}_2\text{CI}_2} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{H}} \underbrace{OEt}_{\text{CF}_2\text{Pr}}}_{99\%} \underbrace{\stackrel{O}{\underset{\text{P}}}_{99\%} \underbrace{OEt}_{\text{CF}_2\text{Pr}} \underbrace{\stackrel{O}{\underset{\text{FtOH}}}_{\text{FtOH}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{CF}_2\text{Pr}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{H}} \underbrace{OEt}_{\text{H}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{CF}_2\text{Pr}}}_{\text{FtOH}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{FtOH}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{CF}_2\text{Pr}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{H}} \underbrace{OEt}_{\text{H}} \underbrace{\stackrel{O}{\underset{\text{H}}}_{\text{H}} \underbrace{OEt}_{\text{H}} \underbrace{OE}_{\text{H}} \underbrace{OE}_{\text{H$$

Scheme 1. Hall's synthesis and elaboration of an α , α -difluorophosphinate.⁴

2. Results and discussion

2.1. Synthesis of difluoromethylphosphinate RP(O)(OEt)CF₂H precursors

Three precursors 1-3 were synthesized previously (Eq. 2).⁵ A fourth compound **4** was synthesized similarly from (EtO)₂CHP(O)

^{*} Corresponding author. E-mail address: j.montchamp@tcu.edu (J.-L. Montchamp).

^{0040-4020/\$ —} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.04.036

(OEt)H. We have been referring to $(EtO)_2CRP(O)(OEt)H$ (R=H, Me) as the 'Ciba-Geigy reagents', after their development in that company. As will be discussed below, significant differences exist between compounds **3** and **4**.

The alkylation of *H*-phosphinate esters with lithium hexamethyldisilazide (LiHMDS)⁵ and F₂CHCl (R-22) and mild deoxygenation gives good yields of products **1–4** (71–78%). As we have reported previously, moderate deoxygenation is necessary to achieve good yields of product (this is because the P(III) anion is easily oxidized).^{5,6}

2.2. Functionalization of the difluoromethylphosphinates

Although the $P(O)CF_2H$ group is acidic, electrophilicity of the phosphorus atom is also increased so that P-substitution is an expected competitive pathway. Table 1 shows the outcome of the deprotonation—alkylation process with compound **3** (and methyl iodide as electrophile) as a function of the base employed. *t*-BuLi gives the best results because it is a strong base and less nucleophilic than other butyllithium reagents.

Table 1

Role of the base in the alkylation of $\mathbf{3}$ with CH_3I

Entry	Base (equiv)	Conditions ^a	Crude NMR yie and ¹⁹ F (%)	eld, ³¹ P Isolated yield (%)
1	LDA (1.0)	Deoxygenated	20	—
2	LiHMDS (1.0)	Deoxygenated	0	_
3	t-BuLi (1.0)	Deoxygenated	80	_
4a	t-BuLi (1.1)	Deoxygenated	100	91
4b		Without	53	_
		deoxygenation		

^a Unless otherwise noted, all reactions were deoxygenated for 30 min to 1 h prior to adding the base.

The role of electrophile was also investigated (Table 2). Not surprisingly, the less reactive electrophiles gave a lower alkylation yield.

Table 2

Ro	le	of	the	Electroph	ile in	the	Alky	lation	of 3	with	t-BuL	ja,
----	----	----	-----	-----------	--------	-----	------	--------	------	------	-------	-----

Entry	Electrophile	Crude NMR, ³¹ P and ¹⁹ F (%)	Isolated yield (%)
1	OctI	100	85
2	OctBr	100	82
4	OctOTs	45	_
3	OctCl	30	-

^a Conditions: (1) deoxygenation, (2) addition of RX at -78 °C, 30 min after the base, (3) -78 °C to 15 °C, 1.5 h, (4) extractive work-up.

2.3. Scope of the alkylation

Compound **3** was treated with several electrophiles (Table 3). The yields are moderate to good. When 0.5 equiv of a dielectrophile is employed, the disubstituted product is obtained.

Table 3		
Reactions of phosphinate	3 with some	electrophiles

Entry	Base (1.1 equiv)	Electrophile		Isolated yield (%)
1	t-BuLi	Br	0.5 equiv	69 ^a
2	t-BuLi	Br	0.5 equiv	62 ^a
3	t-BuLi	Br	1.05 equiv	65
4	t-BuLi	ClOPh	1.0 equiv	70
5	t-BuLi	Geranyl bromide	1.0 equiv	52

^a Disubstitution.

Alkylation with a carbohydrate-derived iodide also gave satisfactory results but the product was obtained as the fully hydrolyzed *H*-phosphinic acid (Eq. 3). It is interesting to note that **3** was successful in this reaction, but **4** was not, under otherwise identical conditions. In fact, the reactions of compound **4** are typically very different from that of **3**. Table 4 summarizes the results with methyl iodide and **4** (compare with Table 1). It is expected that the electron-donating methyl substituent in compound **3** will somewhat deactivate the phosphorus atom toward nucleophilic attack. However, the subtle electronic effects translate into significant differences when compared to compound **4**.

Table 4	
Role of the base in the alkylation of	4 with CH ₃ I

equiv)	nunuons	yield, ³¹ P and ¹⁹ F (%)	isolated yield (%)
A Dec	oxygenated	100	62
i Deo	oxygenated	Some addition to P	_
.ıLi Deo	oxygenated	Addition to P major	—
	equiv) A Dec i Dec 1Li Dec	equiv) A Deoxygenated i Deoxygenated iLi Deoxygenated	equiv)yield, ³¹ P and ¹⁹ F (%)ADeoxygenated100aDeoxygenatedSome addition to PaLiDeoxygenatedAddition to P major

^a All reactions were deoxygenated for 30 min to 1 h prior to adding the base.

Compounds $RP(O)(OEt)CF_2R'$ are hydrolyzed very easily during chromatography on silica gel, even in the presence of some base (like Et₃N) in the eluent. This is not surprising due to the increased electrophilicity of the phosphorus atom with the powerful electron-withdrawing CF₂H group. Thus, products are often isolated and/or characterized as the corresponding *H*-phosphinic esters or acids. *H*-Phosphinate esters RP(O)(OEt)H are typically hydrolyzed rather easily, and the difluoro-substituted compounds RCF₂P(O) (OEt)H are even more prone to further hydrolysis to the corresponding *H*-phosphinic acids RCF₂P(O)(OH)H.

2.4. Alkylation of 2

Alkylation of compound **2** resulted in an unexpected chain functionalization, as opposed to the difluoromethyl deprotonation/ alkylation (Eq. 4).

Download English Version:

https://daneshyari.com/en/article/5223390

Download Persian Version:

https://daneshyari.com/article/5223390

Daneshyari.com