Tetrahedron 66 (2010) 1637-1642

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of 2,3-disubstituted pyrazines and quinoxalines by Heck cross-coupling reactions of 2,3-dichloropyrazine and 2,3-dichloroquinoxaline. Influence of the temperature on the product distribution

Imran Malik^a, Munawar Hussain^a, Asad Ali^a, Serge-Mithérand Tengho Toguem^a, Fatima Z. Basha^b, Christine Fischer^c, Peter Langer^{a, c, *}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^b International Center for Chemical and Biological Sciences, University of Karachi, Pakistan ^c Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 27 October 2009 Received in revised form 4 January 2010 Accepted 5 January 2010 Available online 11 January 2010

Keywords: Catalysis Cross-coupling reactions Pyrazine Palladium

1. Introduction

Pyrazines and quinoxalines are of considerable pharmacological relevance and are present in various natural products. Examples include various simple alkyl-substituted pyrazine derivatives,¹ botryllazines A and B,² or 2,5-bis(3-indolylmethyl)pyrazine.³ The quinoxaline echinoserine shows antibiotic activity.⁴ Antimicrobial activity has been reported also for naturally occurring phenazines.⁵ Biopterin⁶ and pteridine⁷ represent nucleobase-type natural products, which are also pharmacologically active (e.g., inhibition of tRNA-guanine transglycosylase). Other properties of pyrazines include anticoagulant activity⁸ and promotion of the melamine synthesis.⁹ The cephalostatins and ritterazines are prominent pyrazine natural products, which exhibit a strong cytotoxic and cancerostatic activity.¹⁰

2,3-Dichloropyrazine and 2,3-dichloroquinoxaline represent useful building blocks for the synthesis of substituted and annulated pyrazines and quinoxalines. Condensed heterocycles have been prepared by cyclization of 2,3-dichloropyrazine with 2-aminobenzenethiol,¹¹ 2-aminophenol,¹² 3-hydroxy-1*H*-pyridine-2-

* Corresponding author. Fax: +49 381 4986412.

E-mail address: peter.langer@uni-rostock.de (P. Langer).

ABSTRACT

Heck cross-coupling reactions of 2,3-dichloropyrazine provide a convenient approach to 2,3-dialkenyl-, 2-alkenyl-3-alkyl-, and 2,3-dialkylpyrazines depending on the reaction conditions.

© 2010 Elsevier Ltd. All rights reserved.

thione,¹³ 3-amino-6-methoxy-1*H*-pyridine-2-thione,¹⁴ 2-aminobenzeneselenol,¹⁵ and pyrid-2-yl-acetonitrile.¹⁶ Open-chained pyrazines have been prepared by reaction of 2,3-dichloropyrazine with 1 equiv of different enolates,¹⁷ 2 equiv of thiols,¹⁸ and DMAP.¹⁹ Transition metal-catalyzed reactions of 2,3-dichloropyrazine have only scarcely been reported. 2,3-Diarylpyrazines and 2,3di(alkynyl)pyrazines have been recently prepared by Suzuki²⁰ and Sonogashira reactions, respectively.²¹ Herein, we report what are, to the best of our knowledge, the first Heck reactions of 2,3dichloropyrazine and -quinoxaline.^{22, 23} These reactions provide, depending on the reaction conditions, a convenient approach to 2,3-dialkenyl-, 2-alkenyl-3-alkyl-, and 2,3-dialkylpyrazines and their quinoxaline derivatives.

2. Results and discussion

The reaction of 2,3-dichloropyrazine (**1a**) with ethyl acrylate (**2a**), in the presence of Pd(OAc)₂ (5 mol %) and Xphos²⁴ (10 mol %), afforded the 2,3-dialkenylpyrazine **3a** in 83% yield (Scheme 1, Table 1). The employment of Pd(PPh₃)₄ was less successful in terms of yield. The best yields were obtained when 5 mol % of the catalyst, 10 mol % of the ligand, and a slight excess of the alkene (2.5 equiv) were employed and when the reaction mixture was stirred at 90 °C for 48 h. Partial hydrogenation was observed when the reaction

^{0040-4020/\$ –} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.01.021

was carried out at higher temperature (vide infra). On the other hand, the yields also decreased when the temperature was decreased, due to lower conversion of the starting material.

Scheme 1. Synthesis of 2,3-di(alkenyl)pyrazines and quinoxalines **3a–l**. Conditions: *I*, **2a–I** (2.5 equiv), Pd(OAc)₂ (5 mol %), Xphos (for **3a,b,e–l**) or SPhos (for **3c,d**) (10 mol %, structures, see Scheme 2), NEt₃, DMF, 90 °C.

Scheme 2. Biaryl monophosphine ligands developed by Buchwald and co-workers (Ref. 24).

Table 1 Synthesis of 3a–1

1	2	3	R ¹	R ²	R ³	% (3) ^a	<i>T</i> [°C]
a	а	а	Н	Н	CO ₂ Et	83	90
a	b	b	Н	Н	Ph	82	90
а	с	с	Н	Н	4-(MeO)C ₆ H ₄	78 ^b	90
а	d	d	Н	Н	4-MeC ₆ H ₄	82 ^b	90
а	е	e	Н	Н	4-ClC ₆ H ₄	66	90
a	f	f	Н	Н	$4-(^{t}BuO)C_{6}H_{4}$	64	90
b	g	g	-(CH=	=CH)2-	CO ₂ Me	78	120
b	h	h	-(CH=	=CH)2-	<i>c</i> Hex	67	120
b	b	i	-(CH=	=CH)2-	Ph	72	120
b	f	j	-(CH=	=CH)2-	$4-(^{t}BuO)C_{6}H_{4}$	67	120
b	с	k	-(CH=	=CH)2-	4-(MeO)C ₆ H ₄	83	120
b	i	1	-(CH=	=CH)2-	$4-^{t}BuC_{6}H_{4}$	69	120

^a Yield of isolated products.

^b Sphos instead of Xphos was used.

The Pd(OAc)₂-catalyzed reaction of **1a** with styrenes **2b**–**f**, in the presence of Xphos or SPhos²⁴, gave the 2,3-dialkenylpyrazines **3b**–**f** in 64–83% yields. The reaction of 2,3-dichloroquinoxaline (**1b**) with **2b,c,f**,–**I** afforded the 2,3-dialkenylquinoxalines **3g–I** in 67–83% yields. The synthesis of the quinoxaline derivatives had to be carried out at 120 instead of 90 °C to obtain good yields.

The Pd(OAc)₂-catalyzed reaction of 2,3-dichloropyrazine (**1a**) with acrylates **2a,g,i-m** (2.5 equiv), carried out at 110 rather than 90 °C, afforded the 2-alkenyl-2-alkylpyrazines **4a–g** in 69–83% yield (Scheme 3, Table 2). The formation of products **4a–g** can be explained by partial reduction of the in situ formed 2,3-dialkenylpyrazines. The reaction of 2,3-dichloroquinoxaline (**1b**) with *tert*-butyl acrylate (**2k**), carried out at 130, gave 2-alkenyl-2-alkylquinoxaline **4h**. The formation of products **4a–h** might be explained by protodemetalation or reduction.²⁵

Scheme 3. Synthesis of 2-alkenyl-3-alkylpyrazines and -quinoxalines **4a–h**. Conditions: *I*,: **2a**,**g**,**i**–**m** (2.5 equiv), $Pd(OAc)_2$ (5 mol %), Xphos (10 mol %), NEt₃, DMF, 110 °C, 48 h (for **4a–g**), 24 h (for **4h**).

Table 2	
Synthesis	of 4a-h

1	2	4	\mathbb{R}^1	R ²	R ³	% (4) ^a	<i>T</i> [°C]
a	g	а	Н	Н	CO ₂ Me	78	110
a	а	b	Н	Н	CO ₂ Et	71	110
a	i	с	Н	Н	CO ₂ nBu	74	110
a	j	d	Н	Н	CO ₂ ⁱ Bu	75	110
a	k	e	Н	Н	CO ₂ ^t Bu	83	110
a	1	f	Н	Н	$CO_2 nHex$	79	110
a	m	g	Н	Н	CO ₂ R ^b	69	110
b	k	h	-(CH=	=CH)2-	CO ₂ ^t Bu	75	130

^a Yield of isolated products.

^b R=CH₂CH(Et)(CH₂)₃CH₃.

The Pd(OAc)₂-catalyzed reaction of **1a** with 2.5 equiv of acrylates **2i–k,m**, carried out at 140 °C, afforded the 2,3-dialkylpyrazines **5a–c** in good yield (Scheme 4, Table 3). The formation of products **5a–c** can be explained by complete reduction, due to the high temperatures. The reaction of **1b** with **2m** and **2k**, carried out at 150 °C, afforded the 2,3-dialkylquinoxalines **5d** and **5e**, respectively. The formation of products **5a–e** can be again explained by protodemetalation or reduction.

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ 1 \end{array} \begin{array}{c} R^{3} \\ 2\mathbf{i} \cdot \mathbf{k}, \mathbf{m} \\ i \\ R^{2} \\ R^{2} \\ R^{2} \\ N \\ R^{3} \\ R$$

Scheme 4. Synthesis of 2,3-dialkylpyrazines and -quinoxalines **5a–e**. Conditions: *I*: **2i–k,m** (2.5 equiv), Pd(OAc)₂ (5 mol%), Xphos (10 mol%), NEt₃, DMF, 140 °C, 48 h (for **5a–c**), 24 h (for **5d, e**).

Table 3			
Synthesis	of	5a-	-1

5							
1	2	5	\mathbb{R}^1	R ²	R ³	% (5) ^a	<i>T</i> [°C]
a	i	а	Н	Н	CO ₂ nBu	69	140
a	j	b	Н	Н	CO ₂ <i>i</i> Bu	76	140
a	k	с	Н	Н	CO ₂ ^t Bu	70	140
b	m	d	-(CH=CH)2-		CO ₂ R ^b	69	150
b	k	e	-(CH=	-CH) ₂ -	CO ₂ ^t Bu	77	150

^a Yield of isolated products.

^b R=CH₂CH(Et)(CH₂)₃CH₃.

The Pd(OAc)₂-catalyzed reaction of **1b** with 1.25 rather than 2.5 equiv of **2h**, carried out at 120 °C, afforded the 2-alkenylquinoxaline **6** in 70% yield (Scheme 5). The formation of product **6** can be explained by partial reduction of the in situ formed 2-bromo-3-alkenylquinoxaline.

Scheme 5. Conditions: I, Pd (OAc)_2 (5 mol %), Xphos (10 mol %), 2 h (1.25 equiv) NEt₃, DMF, 120 °C, 48 h.

In conclusion, we have reported the synthesis of 2,3-dialkenyl-, 2-alkenyl-3-alkyl-, and 2,3-dialkylpyrazines and their quinoxaline derivatives based on Heck cross-coupling reactions of 2,3-dichloropyrazine and -quinoxaline. An increase of the reaction temperature results in partial or complete hydrogenation of the double bond.

3. Experimental section

3.1. General comments

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For 1 H and 13 C NMR

Download English Version:

https://daneshyari.com/en/article/5223558

Download Persian Version:

https://daneshyari.com/article/5223558

Daneshyari.com