Available online at www.sciencedirect.com

’ : JOURNAL OF
ScienceDirect COMPUTATIONAL
PHYSICS

" el s
ELSEVIER Journal of Computational Physics 219 (2006) 247-275

www.elsevier.com/locate/jcp

A high-order 3D boundary integral equation solver
for elliptic PDEs in smooth domains

Lexing Ying **, George Biros >, Denis Zorin ¢

& Applied and Computational Mathematics, California Institute of Technology, CA 91125, United States
® Department of Mechanical Engineering, University of Pennsylvania, PA 19104, United States

¢ Department of Computer and Information Science, University of Pennsylvania, PA 19104, United States
4 Courant Institute of Mathematical Sciences, New York University, NY 10012, United States

Received 29 September 2005; received in revised form 6 March 2006; accepted 20 March 2006
Available online 11 May 2006

Abstract

We present a high-order boundary integral equation solver for 3D elliptic boundary value problems on domains with
smooth boundaries. We use Nystrom’s method for discretization, and combine it with special quadrature rules for the sin-
gular kernels that appear in the boundary integrals. The overall asymptotic complexity of our method is O(NY 2), where N
is the number of discretization points on the boundary of the domain, and corresponds to linear complexity in the number
of uniformly sampled evaluation points. A kernel-independent fast summation algorithm is used to accelerate the evalu-
ation of the discretized integral operators. We describe a high-order accurate method for evaluating the solution at arbi-
trary points inside the domain, including points close to the domain boundary. We demonstrate how our solver, combined
with a regular-grid spectral solver, can be applied to problems with distributed sources. We present numerical results for
the Stokes, Navier, and Poisson problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Potential theory has played a paramount role in both analysis and computation for boundary value prob-
lems for elliptic partial differential equations. Numerous applications can be found in fracture mechanics, fluid
mechanics, elastodynamics, electromagnetics, and acoustics. Results from potential theory allow us to repre-
sent boundary value problems in integral equation form. For problems with known Green’s functions, an inte-
gral equation formulation leads to powerful numerical approximation schemes. The advantages of such
schemes are well known: (1) there is no need for volume mesh generation; (2) in many cases they result in oper-
ators with bounded condition number; (3) for exterior problems, they satisfy far-field boundary conditions
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exactly; and (4) they typically exhibit high convergence rates when the domain boundary and boundary con-
dition are sufficiently smooth.

Despite their advantages, numerical approximations to integral equations are plagued by several mathe-
matical and implementational difficulties, especially if the goal is to obtain an algorithm that is asymptotically
optimal, accurate, and fast enough to be useful in practical settings. Indeed, in order to get such an algorithm,
for domains with smooth boundaries,' one has to address five main problems:

o Fuast summation. The discretized operators are dense and the corresponding linear systems are prohibitively
expensive to solve. Direct solvers are not applicable; iterative methods like GMRES can help, but still result
in suboptimal complexity.

e Fast and accurate quadratures. One needs to use suitable quadrature rules to discretize the integral opera-
tors; the kernels are often singular or hypersingular, and the choice of the quadrature rule is important to
obtain high-order convergence. This is a difficult problem that is made worst by the need to guarantee opti-
mal complexity.

e Domain boundary representation. High-accuracy rules often require smooth approximations to the domain
boundary. In two dimensions this is a relatively easy problem, but it is more complicated in the case of three
dimensions.

e Solution evaluation. The solution is typically evaluated on a dense grid of points inside the domain. Such
grids can include points arbitrarily close to the boundary, in which case nearly-singular integrals need to
be evaluated. Again, the goal is to guarantee high accuracy at optimal complexity.

e Volume potentials. For problems with possibly highly non-uniform distributed forces, one has to devise
efficient schemes for the computation of volume integrals, especially in the case where the support of the
function coincides with a volumed domain that has a complex boundary.

In this paper, we present a method that addresses each in turn, save the last.

For two-dimensional boundary value problems in smooth domains, a number of highly efficient boundary
integral solvers has been developed [5,21,23,33]. Most implementations are based on indirect formulations that
result in integral equations with double layer potentials. In 2D, these kernels are often non-singular and the
domain boundary can be easily parameterized; the boundary integrals can then be evaluated using standard
quadrature rules, and superalgebraic convergence rates can be obtained. Such discretization combined with
fast summation methods result in optimal algorithms. In three dimensions, however, the situation is radically
different (we review the related work in the following section).

We present a 3D boundary integral solver for elliptic PDEs, for domains with smooth (C> or C*-contin-
uous for sufficiently large k, but not necessarily analytic) boundaries, which achieves high-order convergence
with linear complexity with respect to the number of evaluation points. The distinctive features of our solver
are: (1) fast kernel-independent summation; (2) arbitrary smooth boundaries and high-order convergence; (3)
distributed forces that are uniformly defined in a box that encloses the target domain; and (4) high-accurate
direct evaluation of the solution in a non-uniform distribution of points.

The operators are sparsified by our kernel-independent fast multipole method (FMM) [49], which makes it
possible to accelerate the solution of the dense linear system for many elliptic PDEs of which the kernels have
explicit expressions. We use Nystrom’s method to discretize the boundary integral equations. There are two
reasons to prefer Nystrom’s method to Galerkin or collocation approaches: simpler implementation for super-
algebraic convergence and, based on existing literature, lower constants [12].

Although the kernels of various PDEs are different, the behavior of their singularities are similar. We
address the second problem (quadrature construction) by extending the local quadrature methods of [11] to
integrate the singularities of various types. A key component of the solver is the ability to have high-order
representations for arbitrary geometries with (relatively) minimal algorithmic and implementational complex-
ity. Such a representation is described in detail in [51]. To compute the near-singular integrals for points close
to the boundary, we adopt a high-order scheme to interpolate the solution from the values at points suffi-

! Domains with edges and corners present additional challenges that we do not discuss in this particle.
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