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a b s t r a c t

An adaptive implicit–explicit scheme for Direct Numerical Simulation (DNS) and Large-
Eddy Simulation (LES) of compressible turbulent flows on unstructured grids is developed.
The method uses a node-based finite-volume discretization with Summation-by-Parts
(SBP) property, which, in conjunction with Simultaneous Approximation Terms (SAT) for
imposing boundary conditions, leads to a linearly stable semi-discrete scheme. The solu-
tion is marched in time using an Implicit–Explicit Runge–Kutta (IMEX-RK) time-advance-
ment scheme. A novel adaptive algorithm for splitting the system into implicit and explicit
sets is developed. The method is validated using several canonical laminar and turbulent
flows. Load balance for the new scheme is achieved by a dual-constraint, domain decom-
position algorithm. The scalability and computational efficiency of the method is investi-
gated, and memory savings compared with a fully implicit method is demonstrated. A
notable reduction of computational costs compared to both fully implicit and fully explicit
schemes is observed.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) are widely used to simulate compressible turbulent
flows. DNS simulates all the flow scales, whereas in LES, the equations are low-pass filtered, and the small-scale turbulent
eddies are modeled. Recently, there has been a growing interest in applying DNS and especially LES to practical engineering
applications that typically involve high Reynolds number flows and complex geometries. An unstructured spatial discretiza-
tion scheme is the preferred choice to resolve complex geometries. Both the computational grid and the flow may induce
stiffness in the equations restricting the time-step size of an explicit time integrator. Typical examples include resolved
boundary layers for which both the viscous and inviscid terms may be stiff. The former is due to the small grid size and
the latter is due to the acoustic Courant–Friedrichs–Lewy (CFL) condition.

Several approaches have addressed stiff equations. A fully implicit approach treats every term throughout the entire com-
putational domain implicitly. However, it requires the solution of a large non-linear system of equations. For realistic appli-
cations, the cost of solving the non-linear system may be more than marching the scheme explicitly in time. Some methods,
such as relaxation-based schemes and multi-grid reduce the cost of a fully implicit approach (see [1], and for unstructured
methods [2] and references therein). Furthermore, the memory required to store the Jacobian matrix and preconditioners is
considerable and may prevent computations of realistic applications. The memory requirement for the Jacobian matrix can
be reduced by means of a pressure-correction method [3,4] or eliminated by using a Jacobian-free Krylov subspace linear

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2010.04.027

* Corresponding author. Tel.: +1 650 723 2416.
E-mail address: shoeybi@stanford.edu (M. Shoeybi).

Journal of Computational Physics 229 (2010) 5944–5965

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2010.04.027
mailto:shoeybi@stanford.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


solver [5]. For the latter method, the sparse matrix–vector multiplication is replaced by a flux calculation, which increases
the computational cost. Hence, there is considerable room for designing effective numerical schemes by avoiding fully im-
plicit time-integration schemes.

One approach to reduce both memory and computational cost is to identify stiff parts of the Ordinary Differential Equa-
tion (ODE) system obtained from spatial discretization of the governing PDE and employ an implicit–explicit (IMEX) time-
integration scheme. An IMEX scheme integrates stiff parts implicitly and the non-stiff parts explicitly in time. Such a time-
advancement scheme can be constructed using linear multi-step methods [6]. Alternatively, one may use Runge–Kutta based
IMEX schemes [7,8] that have better stability properties than linear multi-step methods. In any case, an IMEX method re-
quires partitioning of the ODE system into stiff and non-stiff parts. The stiffness may originate from specific terms in the
governing equations (see for instance, [9–11]) and/or from specific directions/regions in the flow (for example, the wall-nor-
mal diffusion in a boundary-layer simulation [12]). However, for the unstructured grids it is difficult to identify a stiff direc-
tion. For specially designed unstructured grids, Nompelis et al. [13] proposed a method with an implicit treatment of the
wall-normal direction. Nevertheless, in many cases, the stiffness is confined to certain regions in the computational domain.
A possible approach for such problems is to use a variable hybrid method that blends explicit and implicit schemes using a
continuous parameter controlling the fraction of each problem [14]. Alternatively, one can decompose the computational
domain into implicit and explicit regions using a measure for geometrically induced stiffness (see Kanevsky et al. [15]).

Therefore, there is potential for saving computational cost by designing an efficient algorithm that treats implicitly only
those regions and/or phenomena that require it. In this paper, we propose a novel splitting algorithm that measures the stiff-
ness and devise implicit and explicit parts, with respect to both the computational domain and the spatial directions. The
splitting algorithm will be referred to as Row-Splitted IMEX (RS-IMEX) scheme. The RS-IMEX scheme operates in time allow-
ing the decomposition to adapt at every time step. Moreover, the scheme is well-suited for large-scale computations re-
quired for the DNS/LES, as it is designed to be highly parallelizable and scalable.

In this study, we use a node-based finite-volume scheme to discretize the spatial derivatives. In [16–18], the SBP and SAT
techniques for imposing boundary conditions were used to prove stability for high-order finite difference approximations of
the Navier–Stokes equations. Furthermore, the SBP property was proved for node-based unstructured finite-volume schemes
in [19–21]. In Section 2, we utilize these results to obtain a stable finite-volume discretization. In Section 3, we develop the
RS-IMEX scheme for the advection–diffusion equation and generalize it to the Navier–Stokes equations on unstructured
grids. Finally, we validate the proposed scheme and demonstrate its performance using several test cases in Section 4.

2. Governing equations and spatial discretization

The governing equations are the compressible Navier–Stokes, energy and continuity equations. Let X and @X be the com-
putational domain and its boundary. By using Lr, qr, ur, Tr, and lr as reference length, density, velocity, temperature, and
molecular viscosity, the equations can be stated as
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where q, p, ui, E, and Re = qrurLr/lr denote density, pressure, velocities, energy, and Reynolds number, respectively.
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where l = Tn, n = constant, dij is the Kronecker’s delta, Mr ¼ ur
cr

, cr is the reference sound speed, and Pr is the Prandtl number.
The equations are supplemented with the state equation for an ideal gas, p ¼ qT

cM2
r
, and a suitable boundary operator,

L@X ¼ gð~x; tÞ on @X.
The domain X is discretized by an unstructured grid with M grid cells Xc such that X ¼

SM
c¼1Xc . Eq. (1) is approximated by

a finite-volume method on the dual volumes, Xk. In 2D, the dual volumes Xk are constructed by connecting the edge centers
(ec), to the cell centers (cc), as depicted in Fig. 1. In 3D, the dual volumes are formed by the union of several triangular faces.
Each face is constructed by connecting the edge center, the cell center, and the face center of the grid cells.

A finite-volume method defined by the dual volumes is usually referred to as a node-based scheme or a cell-vertex
scheme. On a fixed dual volume Xk with fixed boundaries @Xk and outward-facing normal ~n, the integral form of (1) is
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