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a b s t r a c t

We describe a parallel algorithm for solving the time-independent 3d Schrödinger equation
using the finite difference time domain (FDTD) method. We introduce an optimized parall-
elization scheme that reduces communication overhead between computational nodes.
We demonstrate that the compute time, t, scales inversely with the number of computa-
tional nodes as t / (Nnodes)�0.95 ± 0.04. This makes it possible to solve the 3d Schrödinger
equation on extremely large spatial lattices using a small computing cluster. In addition,
we present a new method for precisely determining the energy eigenvalues and wavefunc-
tions of quantum states based on a symmetry constraint on the FDTD initial condition.
Finally, we discuss the usage of multi-resolution techniques in order to speed up conver-
gence on extremely large lattices.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Solving the 3d Schrödinger equation given an arbitrary potential Vð~rÞ is of great practical use in modern quantum physics;
however, there are only a handful of potentials for which analytic solution is possible. In addition, any potential that does not
have a high degree of symmetry, e.g. radial symmetry, requires solution in full 3d, making standard ‘‘point-and-shoot”
methods [1] for solving one-dimensional partial differential equations of little use. In this paper we discuss a parallel
algorithm for solving the 3d Schrödinger equation given an arbitrary potential Vð~rÞ using the finite difference time domain
(FDTD) method.

The FDTD method has a long history of application to computational electromagnetics [2–5]. In the area of computational
electromagnetics parallel versions of the algorithms have been developed and tested [6–12]. In this paper, we discuss the
application of parallelized FDTD to the 3d Schrödinger equation. The standard FDTD method has been applied to the 3d
Schrödinger equation by several authors in the past [23–29]. Here we show how to efficiently parallelize the algorithm.
We describe our parallel algorithm for finding ground and excited state wavefunctions and observables such as energy
eigenvalues, and root-mean-squared radii. Additionally, we introduce a way to use symmetry constraints for determining
excited state wavefunctions/energies and introduce a multi-resolution technique that dramatically decreases compute time
on large lattices. This paper is accompanied by an open-source release of a code that implements the algorithm detailed in
this paper. The code uses the Message Passing Interface (MPI) protocol for message passing between computational nodes.

We note that another popular method for numerical solution of the 3d Schrödinger equation is the Diffusion Monte Carlo
(DMC) technique, see [13–17] and references therein. The starting point for this method is the same as the FDTD method
applied here, namely transformation of the Schrödinger equation to imaginary time. However, in the DMC algorithm the
resulting ‘‘dynamical” equations are transformed into an integral Green’s function form and then the resulting integral equa-
tion is computed using stochastic sampling. The method is highly inefficient unless importance sampling [18,19] is used.
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DMC is efficiently parallelized and there are several codes which implement parallelized DMC [20–22]. The method is similar
in many ways to the one presented herein; however, the method we use does not suffer from the fermion sign problem
which forces DMC to use the so-called ‘‘fixed-node approximation” [14]. In addition, although the DMC algorithm can, in
principle, be applied to extract properties of the excited states of the system most applications to date only calculate the
ground state wavefunction and its associated expectation values. The FDTD method described herein can extract both
ground and excited state wavefunctions.

The organization of the paper is as follows. In Sections. 2 and 3 we briefly review the basics of the FDTD method applied to
the 3d Schrödinger equation and derive the equations necessary to evolve the quantum mechanical wavefunction. In Section
4 we discuss the possibility of imposing a symmetry constraint on the FDTD initial condition in order to pick out different
quantum mechanical states. In Section 5 we describe our strategy for parallelizing the FDTD evolution equations and the
measurement of observables. In Section 6 we introduce an efficient method of using lower-resolution FDTD wavefunctions
as initial conditions for higher-resolution FDTD runs that greatly speeds up determination of high-accuracy wavefunctions
and their associated observables. In Section 7 we give results for a few potentials including benchmarks showing how the
code scales as the number of computational nodes is increased. Finally, in Section 8 we conclude and give an outlook for
future work.

2. Setup and theory

In this section we introduce the theory necessary to understand the FDTD approach for solving the time-independent
Schrödinger equation. Here we will briefly review the basic idea of the FDTD method and in the next section we will describe
how to obtain the discretized ‘‘equations of motion”.

We are interested in solving the time-independent Schrödinger equation with a static potential Vð~r; tÞ ¼ Vð~rÞ and a par-
ticle of mass m

Enwnð~rÞ ¼ bHwnð~rÞ; ð2:1Þ

where wn is a quantum–mechanical wavefunction that solves this equation, En is the energy eigenvalue corresponding to wn,
and bH ¼ ��h2r2=2mþ Vð~rÞ is the Hamiltonian operator. In order to solve this time-independent (static) problem it is effica-
cious to consider the time-dependent Schrödinger equation
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Wð~r; tÞ ¼ bHWð~r; tÞ ¼ � �h2

2m
r2 þ Vð~rÞ

" #
Wð~r; tÞ: ð2:2Þ

A solution to (2.2) can be expanded in terms of the basis functions of the time-independent problem, i.e.

Wð~r; tÞ ¼
X1
n¼0

anwnð~rÞe�iEnt ; ð2:3Þ

where {an} are expansion coefficients which are fixed by initial conditions (n = 0 represents the ground state, n = 1 the first
excited state, etc.) and En is the energy associated with each state.1

By performing a Wick rotation to imaginary time, s = it, and setting ⁄ = 1 and m = 1 in order to simplify the notation, we
can rewrite Eq. (2.2) as

@

@s
Wð~r; sÞ ¼ 1

2
r2Wð~r; sÞ � Vð~rÞWð~r; sÞ; ð2:4Þ

which has a general solution of the form

Wð~r; sÞ ¼
X1
n¼0

anwnð~rÞe�Ens: ð2:5Þ

Since E0 < E1 < E2 < � � � , for large imaginary time s the wavefunction Wð~r; sÞ will be dominated by the ground state wavefunc-
tion a0w0ð~rÞe�E0s. In the limit s goes to infinity we have

lim
s!1

Wð~r; sÞ � a0w0ð~rÞe�E0s: ð2:6Þ

Therefore, if one evolves Eq. (2.4) to large imaginary times one will obtain a good approximation to the ground state
wavefunction.2

This allows one to determine the ground state energy by numerically solving Eq. (2.4) for large imaginary time, and then
use this wavefunction to find the energy expectation value E0:

1 The index n is understood to represent the full set of quantum numbers of a given state of energy En. In the degenerate case wn is an admixture of the
different degenerate states.

2 In this context a large imaginary time is defined relative to the energy splitting between the ground state and the first excited state, e.g. eðE0�E1 Þs � 1;
therefore, one must evolve to imaginary times much larger than 1/(E1 � E0).
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