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a b s t r a c t

This paper presents a third-order and fourth-order finite-volume method for solving the
shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid
is built upon an inflated cube placed inside a sphere and provides an almost uniform grid
point distribution. The numerical schemes are based on a high-order variant of the Mono-
tone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer.
In each cell the reconstructed left and right states are either obtained via a dimension-split
piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states
then serve as input to an approximate Riemann solver that determines the numerical
fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple
quadrature points renders the resulting flux high-order. Three types of approximate Rie-
mann solvers are compared, including the widely used solver of Rusanov, the solver of
Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number
flows. Spatial discretizations are paired with either a third-order or fourth-order total-
variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial
discretization. The numerical schemes are evaluated with several standard shallow-water
test cases that emphasize accuracy and conservation properties. These tests show that the
AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The
Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief
discussion on extending the method to arbitrary order-of-accuracy is included.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Atmospheric models are difficult to engineer, largely due to two factors. Firstly, the flow occurs over the surface of a
sphere, rather than in much simpler planar Cartesian geometry and secondly, there are vast scale differences between the
large-scale horizontal flow, with length scales that extend to thousands of kilometers, and vertical motions with length
scales of about 1–10 km. In addition, the dominant motions in the atmosphere are an example of a low-Mach number regime
that is mostly characterized by Mach numbers around M < 0.4. Therefore, care must be taken when applying numerical
methods from other research fields. In particular, in atmospheric flows high-speed motions are only present in fast atmo-
spheric gravity waves or sound waves. The latter are a solution to the 3D nonhydrostatic equation set, but play a negligible
role from a physical viewpoint. Nevertheless, an adequate numerical scheme for atmospheric flows must guarantee stability
for fast waves and treat the slow, physically important, motions with high accuracy.
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A common test bed for atmospheric model development is based on the shallow-water equation set that mimics atmo-
spheric flow in a single layer. A shallow-water model thereby tests the horizontal and temporal discretizations and provides
guidance for the numerical schemes suitable for flows with low-Mach numbers. Note that the shallow-water equations do
not support sound waves but do capture the fast gravity wave propagation.

There are many numerical schemes that have been tested in shallow-water models on the sphere, all of which have both
pros and cons. The spectral transform method discussed in Jakob-Chien et al. [17] achieves high accuracy but tends to exhibit
non-physical numerical oscillations near sharp gradients – so-called Gibb’s ringing. Spectral transform methods also demand
a high computational expense at high resolution that is associated with the computational cost of the Legendre transforms.
Finite-difference approaches include those of Heikes and Randall [16] and Ronchi et al. [32]. Hybrid finite-volume methods
incorporate both a finite-volume treatment of conservative variables and a finite-difference treatment of momentum and
include the models of Lin and Rood [22] and Chen and Xiao [8]. Finite-element type models, including spectral-element
(SE) and discontinuous-Galerkin (DG) models have been presented by Taylor et al. [37], Côté and Staniforth [10], Thomas
and Loft [39], Giraldo et al. [13] and Nair et al. [26].

The aforementioned models represent a wide variety of computational grids on the sphere such as the latitude–longitude
mesh, icosahedral and hexagonal grids, and cubed-spheres meshes. The latter three have become popular over the last dec-
ade as they provide an almost regular grid point coverage on the sphere. The uniform distribution of elements avoids the
convergence of the meridians that is characteristic for latitude–longitude grids, and thereby alleviates the use of polar filters
and other numerical damping techniques. The cubed-sphere grid has also been proven to scale efficiently on massively par-
allel computing platforms as shown by Taylor et al. [38] and Putman and Lin [30]. These two models are therefore under
consideration for operational climate and weather applications at atmospheric modeling centers in the US.

This paper introduces a set of third- and fourth-order-accurate fully-conservative finite-volume methods on cubed-
sphere grids and assesses the impact of the high-order accuracy. These finite-volume methods are built upon the reconstruc-
tion techniques adopted by the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by Van
Leer [44]. Previously, second-order finite-volume methods of this type have been studied for geostropic flows on the sphere
by Rossmanith [33], which is based on the flux-difference-splitting technique of LeVeque [20] on a curved manifold.

Fully-conservative finite-volume methods share local conservation properties with spectral-element and discontinuous-
Galerkin discretizations, but are potentially more computationally efficient due to their relatively weak Courant–Friedrichs–
Lewy (CFL) constraints. Explicit timestepping techniques, when used in combination with these methods, suffer from severe
CFL timestep restrictions related to the clustering of nodal points near element edges (which worsens at high-order). On the
other hand, finite-volume methods possess a large computational stencil at high-order and so are also potentially difficult to
parallelize as effectively as these more compact methods. This difficulty arises primarily in the algorithmic complexity
associated with determining which information needs to be communicated between processors. Although DG and SE
methods only require information to be communicated between elements and their immediate neighbors, the number of
prognotistic quantities associated with each element is significantly larger for these schemes. Whereas for each state
variable finite-volume methods store only one value per element, DG and SE methods can, at fourth-order-accuracy, can
have up to 10 values per element.

The use of neighboring elements by high-order FV schemes also means that element values must be remapped across
coordinate discontinuities, such as those that appear on the cubed-sphere grid. This requirement results in the need for
wider ghost regions near coordinate discontinuities on parallel systems in order to accommodate remapping. Schemes with
local degrees of freedom, on the other hand, including DG and SE methods, may be more attractive in this regard since
remapping is not required, and hence work can be distributed more evenly on parallel architectures.

Although we do not present a technique for constructing a monotone or non-oscillatory scheme in this paper, significant
research has been done on this topic for applications in other research areas. For instance, (Weighted) Essentially Non-Oscil-
latory ((W) ENO)-type reconstructions (e.g. [2,27]), slope limiters (e.g. [43,25]) or flux-corrected transport methods [49] can
all be applied to this class of finite-volume methods presented herein. Monotone DG methods, on the other hand, are an ac-
tive research area.

The method we present involves the use of approximate Riemann solvers to calculate edge fluxes. Most widely used
approximate Riemann solvers (such as the solver of Roe [31]) are designed to model flow in the transsonic or supersonic
regime rather than in the relatively slow flow regime that is typical for the atmosphere. However, recent advances in the
design of approximate Riemann solvers have led to an extension of the Advection Upstream Splitting Method (AUSM,
[24]) to low Mach numbers [23]. The use of this new numerical flux formulation, known as AUSM+-up, has so-far been lar-
gely limited to the aerospace community. Hence, a test of this new approximate Riemann solver will gauge its applicability
for atmospheric models. We also compare the Roe and AUSM+-up schemes to the widely-used and simpler Rusanov solution
[19,34,42].

The performance of all schemes will be analyzed via selected standard test cases from the suite of Williamson et al. [46].
Among them are the advection of a cosine bell, steady-state geostrophic flow, steady-state geostrophic flow with compact
support, flow over an isolated mountain and the Rossby–Haurwitz wave. In addition, we assess the barotropic instability
problem of Galewsky et al. [12] that exhibits sharp vorticity gradients.

The paper is organized as follows: In Section 2 we introduce the cubed-sphere grid with an equiangular projection, which
is the underlying grid for all simulations. Section 3 discusses the shallow-water equations in cubed-sphere geometry. The
high-order finite-volume framework is described in Section 4. Special attention is paid to a careful discretization of the
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