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Abstract

We present a novel algorithm for computing the ground-state and excited-state solutions of M-coupled nonlinear
Schrödinger equations (MCNLS). First we transform the MCNLS to the stationary state ones by using separation of vari-
ables. The energy level of a quantum particle governed by the Schrödinger eigenvalue problem (SEP) is used as an initial
guess to computing their counterpart of a nonlinear Schrödinger equation (NLS). We discretize the system via centered
difference approximations. A predictor–corrector continuation method is exploited as an iterative method to trace solution
curves and surfaces of the MCNLS, where the chemical potentials are treated as continuation parameters. The wave func-
tions can be easily obtained whenever the solution manifolds are numerically traced. The proposed algorithm has the
advantage that it is unnecessary to discretize or integrate the partial derivatives of wave functions. Moreover, the wave
functions can be computed for any time scale. Numerical results on the ground-state and excited-state solutions are
reported, where the physical properties of the system such as isotropic and nonisotropic trapping potentials, mass conser-
vation constraints, and strong and weak repulsive interactions are considered in our numerical experiments.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we are concerned with wave functions of M-coupled nonlinear Schrödinger equations
(MCNLS), also known as the Gross–Pitaevskii equations (GPE) [35]
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i
o

ot
Uj ¼ �DUj þ V jðxÞUj þ ljjUjj2Uj þ

X
i6¼j

bijjUij2Uj for x 2 R2; t > 0;

Uj ¼ Ujðx; tÞ 2 C; j ¼ 1; . . . ;M ;

Ujðx; tÞ ! 0 as jxj ! þ1; t > 0:

ð1Þ

Here the solutions Uj represent the jth component of the beam in Kerr-like photorefractive media [6],

V jðxÞ ¼ 1
2
ðcj;1x2

1 þ cj;2x2
2Þ is the trapping potential with 0 6 cj,1 6 cj,2, which is isotropic if cj,1 = cj,2, otherwise

it is called nonisotropic. The coefficients lj > 0 are for self-defocusing in the jth component of the beam,
the coupling constant bij is the interaction between the ith and the jth components of the beam. The interaction
of any two components is attractive if bij < 0, and repulsive if bij > 0. Eq. (1) also describes a physical model in
which M-species Bose–Einstein condensates (BEC) come from ultra-cold dilute bosonic atoms in a magneti-
cally trapped gas. Experimental reports concerning the BEC can be found, e.g., in [8,9,17,26]. Specifically, Hall
et al. [26] reported the first experimental results concerning the dynamics of a two-component system of BEC
in the different spin states of 87Rb. For simplicity we denote a single nonlinear Schrödinger equation (NLS) by
choosing M = 1 in Eq. (1).

Eq. (1) has been studied extensively for many years because of their importance in many physical and math-
ematical problems; see e.g. [5]. Research articles concerning numerical solutions of Eq. (1) can be found, e.g.,
in [3,11,12,15,32–34,36]. For instance, Muruganandam and Adhikari [34] presented pseudospectral and finite
difference methods for the numerical solution of the BEC in three dimensions. Bao and Tang [15] studied the
ground-state solution of the BEC by directly minimizing the energy functional. To find the time-dependent
solutions of Eq. (1), in general one has to discretize the partial derivatives o

otUj, e.g., using the Crank–Nicolson
finite difference (CNFD) scheme [2]. Bao et al. [13,14] developed time-splitting spectral approximations for the
numerical solutions of Eq. (1), where the Fourier spectral method is used to discretize the Laplacian, and o

otUj

are integrated exactly. Recent studies for the numerical solution of the GPE can be found in [23,38,40]. Spe-
cifically, Chin and Krotscheck [23] described a fourth-order algorithm for solving the imaginary time GPE in a
rotation anisotropic trap. Wang [40] studied the split-step finite difference method for the numerical solution
of the NLS.

The purpose of this paper is twofold. First, we wish to indicate that the numerical continuation methods
described in [18,20] can be exploited to compute wave functions of Eq. (1). More precisely, let

Ujðx; tÞ ¼ e�ikjtujðxÞ; j ¼ 1; . . . ;M ; ð2Þ
where kj is the chemical potential, and uj(x) is a real function independent of time. Then Eq. (1) is transformed
into M steady-state coupled NLS of the following form:

� Duj � kjuj þ V jðxÞuj þ lju
3
j þ

X
i 6¼j

biju
2
i uj ¼ 0 in R2;

uj > 0 in R2; j ¼ 1; . . . ;M ;

ujðxÞ ! 0 as jxj ! þ1:

ð3Þ

By the Hartree–Fock theory for BEC, we rewrite Eq. (3) as

� Duj � kjuj þ V jðxÞuj þ lju
3
j þ

X
i 6¼j

biju
2
i uj ¼ 0 in X; j ¼ 1; . . . ;M ;

u1 ¼ u2 ¼ � � � ¼ uM ¼ 0 on oX:
ð4Þ

To be consistent with the physical meaning of Eq. (1), we assume that X is the unit disk in R2, see e.g. [27]. Eq.
(4) is a nonlinear system of M equations of the following form:

F jðu1; . . . ; uM ; kj; lj; b1j; . . . ; bj�1;j; bjþ1;j; . . . ; bMjÞ ¼ 0; j ¼ 1; . . . ;M ; ð5Þ

where Fj: B1 · RM+1! B2 and F ð�Þ ¼ ðF 1ð�Þ; . . . ; F Mð�ÞÞ, and B1 and B2 are two Banach spaces. For simplicity
we keep the coefficients of the cubic terms fixed, and denote a point on the solution manifolds of Eq. (5) by
{(uj,kj)}j=1:M. For M = 3 Eq. (4) can be expressed as
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