ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A new synthesis of benzo[b]thiophenes utilizing an interrupted Pummerer reaction

Kazuhiro Kobayashi*, Mai Horiuchi, Shuhei Fukamachi, Hisatoshi Konishi

Division of Applied Chemistry, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

ARTICLE INFO

Article history: Received 8 January 2009 Received in revised form 20 January 2009 Accepted 20 January 2009 Available online 29 January 2009

Keywords: Benzo[b]thiophenes Interrupted Pummerer reaction Sulfoxides Acetic anhydride Ring closure

ABSTRACT

A convenient synthesis of 3-arylbenzo[*b*]thiophenes utilizing an interrupted Pummerer reaction of 2-(1-arylvinyl)phenyl ethyl sulfoxides is described. Thus, treatment of these sulfoxides, which were readily prepared from 2-sulfanylphenyl ketones or 2-fluoro-5-methoxybenzaldehyde, with acetic anhydride at 100 °C afforded 3-arylbenzo[*b*]thiophenes in reasonable yields.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Literature survey has revealed that many molecules having the benzo[b]thiophene skeleton exhibit a wide variety of biological activities. Therefore, many research groups including us have been developing a number of new methods for the preparation of benzo[b]thiophene derivatives. In this paper we wish to report a new and efficient method for the synthesis of benzo[b]thiophenes. We anticipated that reaction of 2-(1-arylvinyl)phenyl ethyl sulfoxides 5 with acetic anhydride would afford 3-arylbenzo[b]thiophenes 6, via an interrupted Pummerer reaction, because Bates et al. have reported that pyrrolo[2,1-b]benzothiazole is formed by treating alkyl 2-(pyrrol-1-yl)phenyl sulfoxides with trifluoroacetic anhydride. They have offered an interrupted Pummerer pathway for its formation.

2. Results and discussion

2-(1-Arylvinyl)phenyl sulfoxides **5** were readily prepared from aryl 2-ethylsulfanylphenyl ketones **2**, which were obtained by two different procedures starting with aryl 2-sulfanylphenyl

ketones 15 or commercially available 2-fluoro-5-methoxybenzaldehyde. In the first procedure, S-ethylation of 1 with iodoethane using sodium hydride as a base produced the corresponding 2-(ethylsulfanyl)phenyl ketones 2a-c in good yields, as shown in Scheme 1. In the second procedure, aryl(2-fluoro-5methoxyphenyl)methanones 3, which were readily prepared from 2-fluoro-5-methoxybenzaldehyde via reaction with arylmagnesium bromide followed by the PCC oxidation in good yields (see Experimental section), were allowed to react with ethanethiol using sodium hydride as a base to give aryl 2ethylsulfanyl-5-methoxyphenyl ketones 2d-i in generally good yields, as shown in Scheme 2. A somewhat low yield was obtained with (2-fluoro-5-methoxyphenyl)(4-methoxyphenyl)methanone (3g). We reasoned that 4-methoxyphenyl substituent might lower the reactivity of 3g toward sodium ethanethiolate.

^{*} Corresponding author. Tel./fax: +81 857 31 5263. E-mail address: kkoba@chem.tottori-u.ac.jp (K. Kobayashi).

Scheme 2.

We conducted the conversion of **2**, thus obtained, into 3-arylbenzo[*b*]thiophenes **6** as outlined in Scheme 3, and the results are summarized in Table 1. Thus, the reaction of compounds **2** with methylene- or ethylene-triphenylphosphorane gave 2-(ethylsulfanyl)styrene derivatives **4**, which was then oxidized with an equimolar amount of sodium metaperiodate to give 2-(1-arylvinyl)phenyl ethyl sulfoxides **5**. As can be seen from the Table, these conversions were carried out generally in good yields.

2
$$Ph_3P=CHR^2$$
 R^1 R^2 R^2

We were able to obtain 3-arylbenzo[b]thiophenes $\bf 6$ by simply heating the sulfoxides $\bf 5$ in acetic anhydride at 100 °C. We found that the reactions proceeded smoothly to give the desired products in good yields, when the α -substituents of $\bf 5$ were phenyl, p-tolyl, 4-methoxyphenyl, 2-thienyl, or 1-naphthyl, and the β -substituent was hydrogen (entries 1, 2, 4–6, and 8–10). Poor yields were obtained, however, with ethyl (1-propenyl)phenyl sulfoxides $\bf 5c$ and $\bf 5f$ - $\bf ii$ (entries 3 and 7). Rather complicated mixtures of

Table 1Preparation of benzo[*b*]thiophenes **6** from 2-(ethylsulfanyl)phenyl ketones **2**

Entry	2	R ²	4 (Yield ^a /%)	5 (Yield ^a /%)	6 (Yield ^a /%)
1	2a	Н	4a (73)	5a (74)	6a (77)
2	2b	Н	4b (75)	5b (87)	6b (62)
3	2c	Me	4c (85)	5c (95)	6c (20)
4	2d	Н	4d (59)	5d (96)	6d (67)
5	2e	Н	4e (81)	5e (83)	6e (59)
6	2f	Н	4f-i (81)	5f-i (93)	6f-i (75)
7	2f	Me	4f-ii (51)	5f-ii (78)	6f-ii (29)
8	2g	Н	4g (75)	5g (81)	6g (86)
9	2h	Н	4h (66)	5h (78)	6h (82)
10	2i	Н	4i (76)	5i (92)	6i (78)

^a Isolated yields.

products were obtained, though no products arising from normal Pummerer reaction were isolated.

A limitation of the aforementioned method is that 3-alkylbenzo[b]thiophenes cannot be prepared. Thus, the treatment of ethyl 2-(1-methylethenyl)phenyl sulfoxide with acetic anhydride under conditions similar to those described above for the preparation of 3-arylbenzo[b]thiophenes $\bf 6$ resulted in almost quantitative recovery of the starting sulfoxide; even the normal Pummerer product could not be formed, though we have no explanation of the reason for this.

A probable pathway leading to 3-arylbenzo[b]thiophenes **6** from 2-(1-arylethenyl)phenyl ethyl sulfoxides **5** is outlined in Scheme 4. This is parallel to that reported by Bates et al. for the formation of pyrrolo[2,1-b]benzothiazole from alkyl 2-(pyrrol-1-yl)phenyl sulfoxides. ^{4a} Thus, treatment of **5** with acetic anhydride generates an S-acetoxylated sulfonium ion intermediate **7**. The alkene π -electrons attack intramolecularly on the sulfur cation center with a loss of acetic acid to afford a benzothiophenium ion intermediate **8**. Ethyl acetate are eliminated from this intermediate to give rise to **6**. The lower yields in the reactions with ethyl (1-propenyl)phenyl sulfoxides **5c** and **5f-ii** thought to be due to unfavorable steric interaction between the methyl substituent and the ethyl group in the intermediate **8**.

5
$$Ac_{2}O$$

$$R^{1}$$

$$SEt$$

$$OAC = OAC$$

$$7$$

$$-ACOH$$

$$Et$$

$$R^{2}$$

$$OAC$$

$$Et$$

$$R^{3}$$

$$ACOEt$$

$$Et$$

$$R^{4}$$

In conclusion, the above-mentioned experiments have demonstrated that the treatment of 2-(1-arylethenyl)phenyl sulfoxides with acetic anhydride results in the formation of 3-arylbenzo[b]-thiophenes. As the present method starts with readily available materials and involves very simple manipulations, it may be of value in organic synthesis. Studies on the synthesis of sulfur-containing heterocycles utilizing this type of reaction are now under way in our laboratory.

3. Experimental

3.1. General

All melting points were obtained on a Laboratory Devices MELTEMP II melting apparatus and are uncorrected. IR spectra were determined with a Shimadzu FTIR-8300 spectrophotometer. The ¹H NMR spectra were determined in CDCl₃ using TMS as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 500 MHz or a JEOL LA400 FT NMR spectrometer operating at 400 MHz. The ¹³C NMR spectra were determined in CDCl₃ using TMS as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 125 MHz. Low-resolution MS spectra (EI, 70 eV) were measured by a JEOL JMS AX505 HA spectrometer. TLC was carried out on a Merck Kieselgel 60 PF₂₅₄. Column chromatography was performed using Merck Kieselgel 60 (0.063–0.200 mm). All of the organic solvents used in this study were dried over appropriate drying agents and distilled prior to use.

Download English Version:

https://daneshyari.com/en/article/5224815

Download Persian Version:

https://daneshyari.com/article/5224815

Daneshyari.com