
Contents lists available at ScienceDirect

# Tetrahedron



# A novel fluoride-sensing scaffold by a peculiar acid-promoted trimerization of 5,6-dihydroxyindole

Lucia Panzella<sup>a</sup>, Alessandro Pezzella<sup>a</sup>, Marianna Arzillo<sup>a, b</sup>, Paola Manini<sup>a</sup>, Alessandra Napolitano<sup>a</sup>, Marco d'Ischia<sup>a,\*</sup>

<sup>a</sup> Department of Organic Chemistry and Biochemistry, University of Naples 'Federico II', Via Cinthia 4, I-80126 Naples, Italy <sup>b</sup> 'Paolo Corradini' Department of Chemistry, University of Naples 'Federico II', Via Cinthia 4, I-80126 Naples, Italy

#### A R T I C L E I N F O

Article history: Received 25 September 2008 Received in revised form 28 November 2008 Accepted 5 January 2009 Available online 8 January 2009

Keywords: 5,6-Dihydroxyindole Fluoride Sensor Fluorescence Rearrangement

### 1. Introduction

5,6-Dihydroxyindoles are a unique group of naturally occurring, catechol-containing heterocyclic compounds, which arise biogenetically by the oxidative cyclization of catecholamines and related tyrosine-derived metabolites. A marked facility to oxidation, leading to black insoluble polymeric materials, is the distinctive chemical feature underlying the biological importance of 5,6dihydroxyindoles.<sup>1</sup> This is well illustrated by their role as primary building blocks of eumelanins,<sup>2</sup> the key components of the human pigmentary system.<sup>3</sup> 5,6-Dihydroxyindoles have also been exploited in cosmetics and medicinal chemistry, e.g., as active moieties in antiviral agents and antibiotics.<sup>4</sup>

Recently, while pursuing a program aimed at designing novel 5,6-dihydroxyindole-based functional materials,<sup>5</sup> we came across an unexpected behavior of this indole when left to polymerize under mildly acidic conditions. The noticeable outcome of this reaction was the formation of a rearranged trimer featuring an unusual 2-benzyl-3-indolylquinoline skeleton. Interestingly, the acetylated derivative of the trimeric product was found to exhibit selective binding properties toward fluoride anions, as revealed by

0040-4020/\$ – see front matter  $\circledcirc$  2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.01.003

A B S T R A C T

An unusual rearranged trimer, 2-(2-amino-4,5-dihydroxybenzyl)-6,7-dihydroxy-3-(5,6-dihydroxyindol-3-yl)quinoline (**1a**), was obtained as the acetyl derivative (**1b**) by mild acid-promoted polymerization of 5,6-dihydroxyindole at pH 2. Compound **1b** proved to be a selective fluoride-sensing compound, transducing  $F^-$  binding into a distinct absorption at 414 nm and a marked fluorescence enhancement at 489 nm.

© 2009 Elsevier Ltd. All rights reserved.

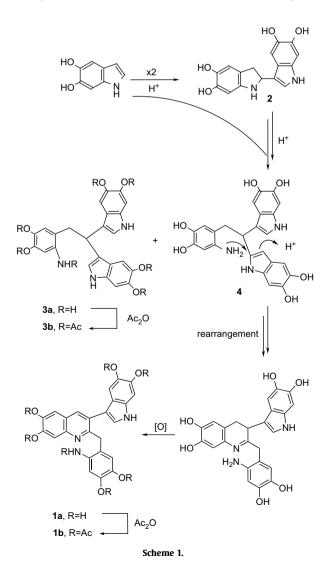
Tetrahedror

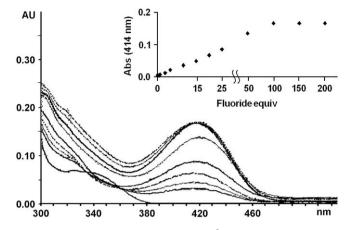
the marked F<sup>-</sup>-induced changes in the absorption and fluorescence spectra. This observation suggested a potential of the trimer as a novel prototype of fluoride-sensing scaffolds. Despite the vast literature that accumulated during the past few years, the quest for easily accessible and efficient fluoride-sensing molecular systems is still an active area of research<sup>6</sup> because of the significant biological, medical, industrial, and environmental relevance of fluoride chemistry.

In this paper we report details of the acid-promoted trimerization of 5,6-dihydroxyindole and describe the selective effects of the fluoride anion on the chromophoric and fluorescence properties of the acetylated trimer.

## 2. Results and discussion

When 5,6-dihydroxyindole was dissolved in phosphate buffer at pH 2 and left at room temperature a smooth reaction occurred, leading after ca. 24 h to a main trimeric species (LC/MS analysis). This was obtained as the heptaacetyl derivative ( $[M+H]^+$  m/z 740) in 10% yield by a simple work-up procedure involving acetylation of the crude mixture followed by a chromatographic step, and was identified as 2-(2-acetamido-4,5-diacetoxybenzyl)-6,7-diacetoxy-3-(5,6-diacetoxyindol-3-yl)quinoline (**1b**) following complete spectral characterization (see Supplementary data). Inspection of the reaction mixture in the early stages showed the formation of dimer **2** and trimer **3a** as minor isolable products.<sup>7</sup>





<sup>\*</sup> Corresponding author. Tel.: +39 081 674132; fax: +39 081 674393. *E-mail address:* dischia@unina.it (M. d'Ischia).

A comparative study showed that none of the other indoles examined, i.e., indole, 5-hydroxyindole, 6-hydroxyindole, 5,6-dimethoxyindole, and 5,6-dihydroxy-*N*-methylindole, give the corresponding 3-(indol-3-yl)quinoline trimer under the same conditions. Use of stronger acids, e.g., HCl, or organic acids, e.g., acetic acid, was not productive, furnishing invariably ill-defined mixtures. The facile formation of **1a** from 5,6-dihydroxyindole is therefore attributed to the specific reactivity of this indole via the 2-position,<sup>8</sup> steering in part the acid-promoted polymerization pathway through the usually less favorable 2-(2-amino-4,5-dihydroxyindol-3-yl)ethane (**4**) (Scheme 1). Formation of the quinoline system of **1a** from **4** may proceed through a rearrangement step akin to that described for indole trimers in acidic media.<sup>9</sup>

The 2-(2-aminobenzyl)-3-(indol-3-yl)quinoline system featured by **1a** has previously been obtained only by harsh treatment of indole under Friedel–Crafts acylation conditions<sup>10</sup> or in the presence of *p*-toluenesulfonic acid followed by complex work-up, extraction, and chromatographic separation steps.<sup>9</sup>

The absorption properties of **1b** are shown in Figure 1. The compound exhibited a distinct maximum at 330 nm in CH<sub>3</sub>CN. Upon the addition of increasing concentrations of  $F^-$ , a yellow coloration became apparent, due to the development of an absorption at 414 nm. Examples of colorless-to-yellow color changes associated with  $F^-$  binding to an organic compound have already been reported in the literature.<sup>11</sup> No clear isosbestic point is





**Figure 1.** Changes in the UV/vis spectra of **1b**  $(1 \times 10^{-5} \text{ M})$  in CH<sub>3</sub>CN after addition of 0, 10, 15, 20, 25, 50, 100, 150, and 200 equiv of tetrabutylammonium fluoride (TBAF). Inset: Absorbance at 414 nm versus equiv of F<sup>-</sup>.

apparent from data in Figure 1, which suggests that color development involves more complex equilibria than a simple 1:1 substrate-anion binding process.

The acetylated derivative **1b** exhibited a remarkable fluorescence enhancement upon the addition of  $F^-$  (Fig. 2). The fluorescence response of **1b** ( $5 \times 10^{-7}$  M) upon addition of up to 300 equiv  $F^-$  is shown in Figure 3. In the absence of  $F^-$ , fluorescence of the free compound was weak and barely detectable. Addition of the anion to the solution caused the emergence of a distinct emission band at 489 nm following excitation at 414 nm. This effect is worthy of note since anion binding causes fluorescence quenching for most of the reported sensors,<sup>12</sup> with only a few exhibiting fluorescence enhancement.<sup>11c,13</sup>

The recognition process was selective for  $F^-$  since in the presence of other anions, including Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, AcO<sup>-</sup>, NO<sub>2</sub><sup>-</sup>, HSO<sub>4</sub><sup>-</sup>, no significant changes in the fluorescence spectra were observed. Complete fluorescence quenching was noted however in the presence of water (>20%). The stoichiometry of the fluoride–**1b** interaction was determined to be 2:1 from the Job's plot (Fig. 3).

In subsequent experiments, the effects of  $F^-$  binding on the parent 5,6-diacetoxyindole and the acetylated trimer **3b** were investigated. Trimer **3b** was a suitable model to identify the chromogenic and fluorogenic systems in **1b**, since it exhibited the



**Figure 2.** Fluorescence changes of **1b**  $(5 \times 10^{-5} \text{ M})$  in CH<sub>3</sub>CN upon addition of 25 equiv of TBAF. (A) no additive; (B) +TBAF (under a UV lamp at 366 nm).

Download English Version:

https://daneshyari.com/en/article/5224941

Download Persian Version:

https://daneshyari.com/article/5224941

Daneshyari.com