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a b s t r a c t

Beams of microscopic particles penetrating scattering background matter play an impor-
tant role in several applications. The parameter choices made here are motivated by the
problem of electron-beam cancer therapy planning. Mathematically, a steady particle
beam penetrating matter, or a configuration of several such beams, is modeled by a bound-
ary value problem for a Boltzmann equation. Grid-based discretization of such a problem
leads to a system of algebraic equations. This system is typically very large because of the
large number of independent variables in the Boltzmann equation—six if no dimension-
reducing assumptions other than time independence are made. If grid-based methods
are to be practical for these problems, it is therefore necessary to develop very fast solvers
for the discretized problems. For beams of mono-energetic particles interacting with a pas-
sive background, but not with each other, in two space dimensions, the first author pro-
posed such a solver, based on angular domain decomposition, some time ago. Here, we
propose and test an angular multigrid algorithm for the same model problem. Our numer-
ical experiments show rapid, grid-independent convergence. For high-resolution calcula-
tions, our method is substantially more efficient than the angular domain decomposition
method. In addition, unlike angular domain decomposition, the angular multigrid method
works well even when the angular diffusion coefficient is fairly large.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Charged-particle transport plays an important role in many fields; examples include electron microscopy [20], cancer
therapy using electrons [12,13], protons, or heavy ions [22], and various other applications of ion beams [21,26]. The work
presented here aims to contribute to the development of accurate and efficient simulation methods for charged-particle
transport. The parameter choices in this paper are motivated by the electron-beam cancer therapy dose-calculation problem
[12,13]. Procedures for electron-beam cancer treatment plan optimization require the solution of many electron transport
problems; the efficiency of the algorithms used for these transport problems is therefore important.

Mathematically, a particle beam, or a configuration of several such beams, is modeled by a Boltzmann equation. This
equation may be linear or nonlinear, depending on whether or not the beam particles interact with each other. Here, we will
assume linearity, a common and accurate approximation in electron-beam cancer therapy planning.

Thus, our investigation belongs to the vast subject of numerical methods for the linear Boltzmann equation. One impor-
tant source of difficulty in the computational solution of the linear Boltzmann equation is the sheer size of the problems:
There are, in general, seven independent variables (position and velocity in three dimensions, and time), and still six when
considering time-independent boundary value problems, as we do here. Of course, this is the number of independent

0021-9991/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2009.12.023

* Corresponding author. Tel.: +1 617 627 2366; fax: +1 617 627 3966.
E-mail address: christoph.borgers@tufts.edu (C. Börgers).

Journal of Computational Physics 229 (2010) 2914–2931

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2009.12.023
mailto:christoph.borgers@tufts.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


variables in any kinetic problem (unless the geometry is special), not just in charged-particle transport. However, there are
additional difficulties associated specifically with charged-particle transport: The mean free path tends to be small, scatter-
ing tends to be very forward-peaked (i.e., particles are typically deflected only very slightly by a single interaction with the
background), and particles typically lose very little energy in a single interaction. These properties of charged-particle trans-
port cause difficulties with the accuracy of discretizations and with the efficiency of solution algorithms for the discretized
problems [16, Section 3.2], which have lead many in the Medical Physics community to believe that the most efficient way of
modeling electron beams may be Monte Carlo simulation. However, based on a rough theoretical complexity estimate pre-
sented in [4], we believe that deterministic, grid-based methods could eventually prove to be a very attractive alternative to
Monte Carlo simulation, provided that all available tools of numerical computing are brought to bear to develop highly accu-
rate discretizations as well as optimally efficient solution algorithms for the discretized problems. Some algorithm and code
development efforts in this direction are in fact underway; see, for instance, [2,9].

In this paper, we focus on the problem of designing highly efficient solvers for a grid-based discretization of the model
equation of [3] (reviewed in Section 2). This equation describes physics in ‘‘Flatland” [1], i.e., in a fictitious two-dimensional
world. It is arguably the simplest possible caricature of charged-particle transport in more than one space dimensions. We
propose and test an angular multigrid method for this problem. The idea of angular multigrid methods for particle transport
with forward-peaked scattering was first proposed, for a one-dimensional problem, by Morel and Manteuffel [17]; exten-
sions of the idea to higher dimensions have had limited success so far [18]. However, for our two-dimensional model prob-
lem, the convergence of the angular multigrid method turns out to be rapid, and the speed of convergence appears to be
independent of the grid size. It is not entirely clear at this point why our approach, for the simpler problem discussed here,
does not encounter the obstacles described in [18]; see Section 10 for some thoughts on this point.

2. The model problem

To make this paper as self-contained as possible, we will review the model equation of [3] and its properties here, closely
following but abbreviating the exposition of [3]. We will mix physical and mathematical terminology, writing, for instance,
about ‘‘particles” that move ‘‘in a domain X # R2”.

2.1. Model equation

We consider mono-energetic particle transport in two space dimensions. It must be emphasized that this is not the same
as (and, indeed, is simpler than) the projection of three-dimensional particle transport into a plane. We consider the motion
of particles in a domain, X # R2, assuming that all particles move at the same constant speed, c > 0. Each particle experiences
collisions at random times, causing random direction changes. The inter-collision distances, k > 0, are exponentially distrib-
uted and independent of each other; their expectation, �k > 0, is called the mean free path. The deflection angles, g, (see Fig. 1)
are independent of each other and of the inter-collision distances.

The probability density of g is p : ð�p;pÞ ! Rþ. We assume that p is an even function, i.e., that particles have no prefer-
ence for scattering to the right over scattering to the left or vice versa. The graph of p qualitatively looks like that shown in
Fig. 2, where the forward-peakedness of the scattering is reflected by the peak in the graph of p near g ¼ 0. For realistic mod-
els of the scattering of electrons, however, this peak would be much more pronounced than in Fig. 2.

The phase space density, f ¼ f ðx; y; h; tÞ, is the number of particles per unit ðx; y; hÞ-volume, where ðx; yÞ 2 X denotes the
particle position, ðcos h; sin hÞ is the particle direction, and t P 0 is time. The function f is 2p-periodic in h. The time evolution
of f is governed by the linear Boltzmann equation, the mathematical statement of the law of conservation of particles,

ft þ c cos h f x þ c sin h f y ¼ cQf : ð1Þ

Here, c denotes the particle speed (assumed constant in this model problem), and the collision operator Q is defined by

Qf ¼ p � f � f
�k

;

where � denotes convolution with respect to h:

ðp � f ÞðhÞ ¼
Z p

�p
pðgÞf ðh� gÞdg:

λ

η

Fig. 1. An example of a particle path.
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