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Abstract

Elliptic problems with sharp-edged interfaces, thin-layered interfaces and interfaces that intersect with geometric
boundary, are notoriously challenging to existing numerical methods, particularly when the solution is highly oscillatory.
This work generalizes the matched interface and boundary (MIB) method previously designed for solving elliptic problems
with curved interfaces to the aforementioned problems. We classify these problems into five distinct topological relations
involving the interfaces and the Cartesian mesh lines. Flexible strategies are developed to systematically extends the com-
putational domains near the interface so that the standard central finite difference scheme can be applied without the loss
of accuracy. Fictitious values on the extended domains are determined by enforcing the physical jump conditions on the
interface according to the local topology of the irregular point. The concepts of primary and secondary fictitious values are
introduced to deal with sharp-edged interfaces. For corner singularity or tip singularity, an appropriate polynomial is mul-
tiplied to the solution to remove the singularity. Extensive numerical experiments confirm the designed second order con-
vergence of the proposed method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since the pioneer work of Peskin [50] in 1977, much attention has been paid to the numerical solution of
elliptic equations with discontinuous coefficients and singular sources on regular Cartesian grids
[7,8,11,15,18,20,30–32,55,58]. Simple Cartesian grids are preferred in these studies since the complicated pro-
cedure of generating unstructured grid could be bypassed, and well developed fast algebraic solvers could be
utilized. The importance of elliptic interface problems has been well recognized in a variety of disciplines, such
as fluid dynamics [16,19,29,47], electromagnetics [23,24] and material science [26]. However, to construct
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highly efficient methods for these problems is a difficult task due to the low global regularity of the solution.
Traditional numerical methods that are constructed with the assumption of smooth solutions cannot perform
at designed accuracy, and might even diverge. For this class of problems, apart from Peskin’s immersed
boundary method (IBM) [21,33,50–52], a number of other elegant methods have been proposed. Among them,
the immersed interface method (IIM), proposed by LeVeque and Li [35] is a second order sharp interface
scheme. The IIM has been made robust and efficient over the past decade [1,14,36,37,54]. The ghost fluid
method (GFM) [17] was proposed as a relatively simple and easy to use approach. For irregular interfaces,
it is nature to construct a solution in the finite element method formulation [2,9,38], in particular, using the
discontinuous Galerkin technique [22]. A relevant, while quite distinct approach is the integral equation
method for complex geometry [44,45]. Aforementioned methods have found much success in scientific and
engineering applications [6–8,15,18,20,25–28,30,32,34,39,41,40,42,53,54,57–59]. A possible further direction
in the field could be the development of higher order interface methods [20,60,61] which are particularly desir-
able for problems involving both material interfaces and high frequency oscillations, such as the interaction of
turbulence and shock, and high frequency wave propagation in inhomogeneous media [5].

One of the most challenging problems in the field is the solution of elliptic equations with sharp-edged coef-
ficients, i.e., non-smooth interfaces. Numerical solutions to this class of problems have widespread applications
in science and engineering, such as electromagnetic wave scattering and propagation [12,48,49], wave-guides
analysis [46], plasma–surface interaction [43], friction modeling [56] and turbulent-flow [4]. To the best of
our knowledge, none of the aforementioned methods proposed for elliptic interface problems have been directly
applied to the treatment of sharp-edged interfaces. Essentially, as the gradient near the tips of sharp-edged
interface is not well defined, some earlier interface methods might not work. Most existing results on this class
of problems are obtained by using finite element methods [46,49]. However, finite element methods might exhi-
bit a reduced convergence rate when used for the analysis of geometries containing sharp edges [25,49].
Consequently, dramatic local mesh refinement is required in the vicinity of sharp edges [13], and leads to severe
increase in computational time and memory requirement. In particular, local mesh refinement does not work if
the solution is highly oscillatory due to the so-called pollution effect [3], which is a common situation in dealing
with electromagnetic wave scattering and propagation. Hou and Liu proposed a finite element formulation [25]
for solving elliptic equations with sharp-edged interfaces. Remarkably, these authors have achieved about 0.8th
order convergence with non-body-fitting grids.

The objective of the present work is to extend the matched interface and boundary (MIB) method previ-
ously designed for solving elliptic problems with curved interfaces to problems with sharp-edged interfaces,
thin-layered interfaces and interfaces that intersect with the geometric boundary. The MIB was proposed
by Zhao and Wei [60] as a systematic higher-order method for electromagnetic wave propagation and scatter-
ing in dielectric media. Recently, it has been generalized for solving elliptic equations with curved interfaces by
Zhou et al. [61]. The MIB approach makes use of fictitious domains so that the standard high order central
finite difference (FD) method can be applied across the interface without the loss of accuracy. The fictitious
values on fictitious domains are determined from enforcing the interface jump conditions at the exact position
of the interface. One feature of the MIB is that it disassociates between the discretization of the elliptic equa-
tion and the enforcement of interface jump conditions. Another feature is to make repeated use of the lowest
order jump conditions to determine the fictitious values on extended domains. Since only lowest order inter-
face jump conditions are repeatedly used in the MIB method, arbitrarily high order convergence can be
achieved in principle. For straight interfaces, MIB schemes of up to 16th order have been constructed
[60,61]. For lightly curved interfaces, up to 6th order schemes have been demonstrated [61]. Most recently,
we have proposed an interpolation formulation of the MIB method without the explicit use of fictitious values
[62]. We have shown that our interpolation formulation is equivalent to our earlier fictitious domain formu-
lation. Fourth order convergence is obtained for arbitrarily curved interfaces. In the present work, we further
generalize the MIB method to allow the presence of sharp-edged interfaces, thin-layered interfaces and inter-
faces that intersect with the domain boundary. For these problems, flexible strategies that have not been ever
considered before are required. We introduce the concepts of primary and secondary fictitious values to over-
come the difficulty of sharp-edged interfaces. The essence is to replace unavailable auxiliary points by second-
ary fictitious points to resolve primary fictitious values when there are geometric difficulties. The topological
relations between the interfaces and the Cartesian mesh lines are classified into five distinct types. For each
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