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Abstract

We present fast locally-corrected spectral methods for linear constant-coefficient elliptic systems of partial differential
equations in d-dimensional periodic geometry. First, arbitrary second-order elliptic systems are converted to overdeter-
mined first-order systems. Overdetermination preserves ellipticity, while first-order systems eliminate mixed derivatives,
resolve convection–diffusion conflicts, and simplify derivative computations. Second, a periodic fundamental solution is
derived by Fourier analysis and mollified for rapid convergence, independent of the regularity of the elliptic problem.
Third, a new Ewald summation technique for first-order elliptic systems locally corrects the mollified solution to achieve
high-order accuracy. We also discuss second-kind boundary integral equations based on single layer potentials formed
with the mollified and corrected fundamental solution, which form a useful toolkit for solving general elliptic boundary
value problems in general domains. The resulting spectral methods provide highly accurate solutions and derivatives
for periodic problems.
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1. Introduction

A wide variety of time-independent physical problems find mathematical expression as second-order linear
constant-coefficient elliptic systemsXd
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where ul
;j is the partial derivative of ul with respect to xj. Such systems include the Poisson, Stokes and linear

elasticity equations, which are often solved by specialized, inflexible codes for specific systems [1–3]. In this
paper, we present a flexible new top-down approach which solves a wide spectrum of elliptic systems with uni-
form efficiency, and apply our new approach to develop accurate and efficient new spectral methods for elliptic
problems in periodic domains. The new methods promise uniform accuracy for nonsmooth solutions and
complex domains which are inaccessible to classical Fourier techniques.

Our approach converts any system (1) to a simple overdetermined first-order system

Xd

j¼1

Aju;j þ A0u ¼ f ;

where each Aj is a p · q matrix and u is a q-vector. The conversion eliminates mixed derivatives, resolves con-
vection-diffusion conflicts, and reduces condition numbers from O(N2) to O(N) at resolution N. It solves all
elliptic systems with a single efficient code, because linear algebra takes its proper place: correlating local rela-
tions between solution components. In the context of boundary integral formulations, the first-order conver-
sion eliminates complicated relations between higher-order potential operators and employs single-layer
potentials exclusively.

The paper is organized as follows. In Section 2, we convert arbitrary second-order elliptic problems to over-
determined first-order systems. In Section 3, we represent the solution to an overdetermined periodic first-
order system as a ‘‘box potential’’ computed by integration against a fundamental solution. A periodic
fundamental solution is derived by Fourier analysis in Section 4. A natural definition of ellipticity for first-
order systems is justified. Suboptimal convergence of standard spectral methods for problems with nonsmooth
solutions is discussed in Section 5. The classical Ewald summation technique which resolves convergence dif-
ficulties for the Poisson equation is reviewed in Section 6. In Section 7, a new Ewald summation technique for
first-order elliptic systems is presented. It splits the fundamental solution into a global rapidly-converging
Fourier series, mollified by a matrix exponential, and an error term. In classical Ewald summation, the error
term is computed via special functions and integration, which cannot easily be done for a general elliptic sys-
tem. Instead, we compute the error term by a simple Taylor expansion in Fourier space, which locally corrects
the mollified fundamental solution by an asymptotic series of local differential operators. Our new mollifica-
tion and local correction techniques are combined with the fast Fourier transform, Padé codes for small dense
matrix exponentials, and high-order uncentered differencing to solve first-order elliptic systems in Section 8. In
Section 9, we present a simple algebraic algorithm for the automatic computation of local correction coeffi-
cients which achieve high-order accuracy at minimal cost. Section 10 presents numerical experiments which
verify efficiency and accuracy. In Section 11 we discuss extensions such as boundary integral equations for
complex domains and variable-coefficient systems.

2. Conversion to first-order systems

Conversion to a first-order system replaces tiresome case-by-case analyses by linear algebra, computes
derivatives of the solution automatically, and fosters the development of practical yet general codes for elliptic
systems. In previous work on moving interfaces [4–6], for example, the various physical models of bulk pro-
cesses require a wide array of solvers for elliptic and parabolic problems, and move the interface via computed
normal derivatives of the solution. This complicated and sensitive technology would be greatly simplified by
efficient codes for the stable computation of solutions and derivatives to general elliptic systems.

We convert the second-order system (1) to a first-order system by introducing all solution components ul

and their first derivatives ul
;j as components of a q-vector u ¼ ðu1; u2; . . . ; us; u1

;1; u
2
;1; . . . ; us

;dÞ ¼
ðu1; u2; . . . ; uqÞ 2 Rq. The vector u satisfies p = (d + d(d � 1)/2 + 1)s P q = (1 + d)s equations, which guaran-
tee the following three conditions:

(a) the first s components (u1,u2, . . . ,us) constitute a solution to the original second-order elliptic system in
the new variables
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