

Tetrahedron 63 (2007) 2472-2481

Tetrahedron

Reaction of guaiazulene with *o*-formylbenzoic acid in diethyl ether (or methanol) in the presence of hexafluorophosphoric acid: comparative studies on ¹H and ¹³C NMR spectral properties of 3-guaiazulenylmethylium- and 3-guaiazulenium-ion structures

Shin-ichi Takekuma, a,* Kazutaka Sonoda, Chika Fukuhara and Toshie Minematsub

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka 577-8502, Japan

^bSchool of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka 577-8502, Japan

Received 6 October 2006; accepted 28 December 2006 Available online 8 January 2007

Abstract—Reaction of guaiazulene (1) with ρ-formylbenzoic acid (2) in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gives the corresponding monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), quantitatively, which upon treatment with aq NaHCO₃ leads to 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in 96% isolated yield. Similarly, reaction of 1 with 2 in methanol under the same conditions as the above reaction affords two kinds of inseparable monocarbenium-ion compounds, 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4) with an equilibrium between them, which upon reaction with a solution of NaBH₄ in ethanol at 25 °C for 30 min leads to 5 in 46% isolated yield and (3-guaiazulenyl)-[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield. Along with the ¹H and ¹³C NMR spectral properties of a solution of 5 in trifluoroacetic acid- d_1 at 25 °C, whose molecular structure is converted to a ca. 1:1 equilibrium mixture of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, comparative studies on the ¹H and ¹³C NMR spectral properties of 7 and 8 with those of the monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), 5, and 6 are reported. From these NMR studies, it can be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of 7 apparently is transferred to the seven-membered ring, generating a resonance form of the 3-guaiazulenyliumion structure n', and the same result can be inferred for the previously documented monocarbenium-ion compounds A-I. Moreover, referring to a comparative study on the C-C bond lengths of A observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for A calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3 calculated using PM3 is described.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis, stability, spectroscopic and chemical properties, crystal structures, electrochemical behavior, and theoretical study (e.g., ab initio calculations, DFT, GIAO-NMR, and NICS) of the azulenium-, ^{1–3} azulenylium-, and azulenylmethylium-ion structures^{4–14} have been studied to a considerable extent, and a large number of the results and discussion regarding those delocalized carbocation compounds have been well documented. In relation to those basic studies, we previously reported a facile preparation and the crystal structures as well as the spectroscopic, chemical,

Keywords: Carbenium-ions; *o*-Formylbenzoic acid; Guaiazulene; 3-(3-Guaiazulenyl)-2-benzofuran-1(3*H*)-one; NMR studies; Properties.

and electrochemical properties of the delocalized mono- and dicarbenium-ion compounds stabilized by the expanded π -electron systems with a 3-guaiazulenyl group. ^{15–28} During the course of our systematic investigations on the delocalized 3-guaiazulenyl-substituted carbenium-ion compounds derived from naturally occurring guaiazulene²⁹ (1), we have recently found (i) that the reaction of 1 with methyl terephthalaldehydate in methanol in the presence of hexafluorophosphoric acid at 25 °C for 2 h gave the corresponding monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), in 94% isolated yield; (ii) that the spectroscopic data of A led to the molecular structure with a resonance form of the 3-guaiazulenylium-ion structure A' in acetonitrile (see Chart 1);²³ and (iii) that along with the spectroscopic data for **A** in acetonitrile, the X-ray crystallographic analysis for A (see Fig. 1a,b) also led to the crystal structure with a resonance

^{*} Corresponding author. Tel.: +81 6 6730 5880x4020; fax: +81 6 6727 4301; e-mail: takekuma@apch.kindai.ac.jp

Chart 1.

form of A'. As a systematic investigation on the above chemistry, our interest has quite recently been focused on a facile preparation, the molecular structure, and properties of the

delocalized monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), which upon treatment with aq NaHCO₃ leads to the formation of 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5). We now wish to report the detailed studies on the reaction of 1 with o-formylbenzoic acid (2) in diethyl ether (or methanol) in the presence of hexafluorophosphoric acid affording 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4), whose compounds can be led to 5 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6), respectively, and comparative studies on the ¹H and ¹³C NMR spectral properties of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, with an equilibrium between them, yielded from 5 dissolved in trifluoroacetic acid- d_1 at 25 °C (see Fig. 2) with those of A, 5, 6, and the previously documented monocarbenium-ion

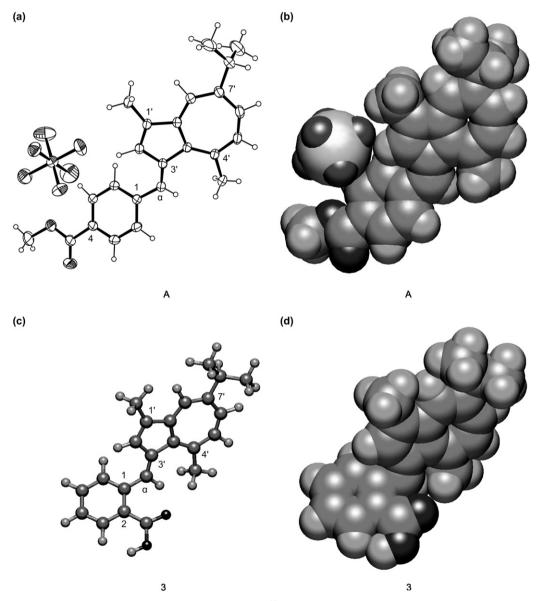


Figure 1. (a) The ORTEP drawing of A (30% probability thermal ellipsoids). (b) The crystal structure of A shown using a space-filling mode. (c) The optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3^{33} shown using a ball-and-stick mode. The selected bond lengths (Å): C1–C2: 1.405, C2–C3: 1.398, C3–C4: 1.389, C4–C5: 1.391, C5–C6: 1.390, C6–C1: 1.398, C1–C α : 1.462, C1′–C2′: 1.361, C2′–C3′: 1.465, C3′–C3 α ′: 1.479, C3 α ′–C4′: 1.390, C4′–C5′: 1.408, C5′–C6′: 1.373, C6′–C7′: 1.405, C7′–C8′: 1.387, C8′–C8 α ′: 1.389, C8 α ′–C1′: 1.466, C8 α ′–C3 α ′: 1.434, C3′–C α : 1.349. (d) The optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3^{33} shown using a space-filling mode.

Download English Version:

https://daneshyari.com/en/article/5225678

Download Persian Version:

https://daneshyari.com/article/5225678

Daneshyari.com