Tetrahedron 66 (2010) 1220-1227

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of D-arabinose-derived polyhydroxylated pyrrolidine, indolizidine and pyrrolizidine alkaloids. Total synthesis of hyacinthacine A₂

Ignacio Delso^a, Tomás Tejero^a, Andrea Goti^{b,*}, Pedro Merino^{a,*}

^a Laboratorio de Sintesis Asimetrica, Departamento de Quimica Organica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza, CSIC, 50009 Zaragoza. Aragon, Spain ^b Dipartimento di Chimica Organica Ugo Schiff and HeteroBioLab, Università di Firenze, associated with ICCOM-CNR, via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy

ARTICLE INFO

Article history: Received 19 November 2009 Received in revised form 8 December 2009 Accepted 9 December 2009 Available online 16 December 2009

Keywords: Alkaloids Pyrrolidines Nitrones

1. Introduction

Polyhydroxylated nitrogen saturated heterocycles, such as pyrrolidines, indolizidines, and pyrrolizidines constitute one of the most extensively examined family of compounds that have been shown to be potent inhibitors of a great variety of glycosidases.¹ This biological activity confers those compounds a well-recognized chemotherapeutic potential as antibacterial,² antidiabetic,³ antitumoral,⁴ and antiviral⁵ agents and, as a consequence, they have been broadly studied subjects of synthetic chemistry for many years.⁶ Among the pleyade of natural and unnatural polyhydroxylated alkaloids of biological interest, those found in Hyacinthaceae plants have received considerable attention from both biological⁷ and synthetic⁸ points of view. Most derivatives isolated from the leaves of bluebells (Hyacinthoides non-scripta) possess a common structural motif consisting of a pyrrolidine having *D*-arabino substitution pattern, that is, three contiguous centers bearing two hydroxyl groups and a hydroxymethyl group, all having R configuration. The simplest member of this family is DAB-1 1. Other structural variations reside in the side chain at C-1 of the pyrrolidine ring leading to DMDP 2 and homo-DMDP **3** among others like **4–6** (Fig. 1).⁹ The same structural motif has also been found in radicamines A 7 and B 8, both isolated from Lobelia chinensis.¹⁰ The side chain at C-1 can also be linked to the nitrogen atom forming a bicyclic structure as in the

ABSTRACT

Several new polyhydroxylated alkaloids including pyrrolidines with a long side chain and 3-(hydroxymethyl) indolizidines were prepared from a common nitrone easily obtained from D-arabinose. In addition, a total synthesis of hyacinthacine A₂ has been achieved in five steps and 67.7% overall yield starting from the same D-arabino-derived nitrone. All synthesized compounds have a common structural feature consisting of a pyrrolidine ring with D-arabino configuration.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

Figure 1. Alkaloids with D-arabino configuration.

^{*} Corresponding authors. Tel./fax: +34 976 762075. *E-mail address*: pmerino@unizar.es (P. Merino).

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.12.030

case of hyacinthacines A2 **9** and A3 **10**¹¹ as well as in the wellknown pyrrolizidines alexine **11**,¹² australine **12**¹³, casuarine **13**,¹⁴ and uniflorine A **14**.¹⁵

Among the various approaches reported in the literature, nucleophilic additions to cyclic nitrones have demonstrated to be an expeditious and efficient method for preparing a variety of polyhydroxylated pyrrolidines and derivatives.¹⁶ The main advantage of this approach resides in the fact that a variety of cyclic nitrones can be prepared from sugars having a different configuration in such a way that most of stereocenters are incorporated in the starting materials. Previous work in our laboratories¹⁷ illustrated this concept and a variety of natural compounds including codonopsinine,¹⁸ lentiginosine,¹⁹ DAB-1,²⁰ DMDP,²¹ and radicamine B²² have been synthesized.

We describe herein the synthesis of the naturally occurring *hyacinthacine* A₂ **9** and the non-natural polyhydroxylated alkaloids **15–18**, compounds, which have the *D*-*arabino* configuration at the pyrrolidine ring (Fig. 2). We envisaged preparing compounds **15–18** using nitrone **19** as a suitable starting material. Nitrone **19** can be readily prepared from *D*-arabinose as described by one of us²² in four steps and 21% overall yield,²³ and it has already been used in our laboratories for preparing DAB-1,¹⁹ radicamine B,²⁰ and hyacinthacine A₂,²¹ in the last case through a dipolar cycloaddition approach.

Figure 2. Target compounds from nitrone 19.

2. Results and discussion

2.1. Synthesis of pyrrolidines with a long side chain

Allylation of nitrone **19** took place with complete selectivity and excellent chemical yield furnishing hydroxylamine **20** as the only product of the reaction (Scheme 1).²⁴ The configurational assignment of **20** was unambiguously determined by 2D NMR techniques (NOESY, COSY). Concomitant deoxygenation, reduction of the double bond, and removal of the benzyl groups were achieved by catalytic hydrogenation (Pearlman's catalyst, 3 bar) in acidic methanol. Purification of the resulting material afforded **21** (90% from **19**), which was characterized as the hydrochloride salt.

Selective deoxygenation of hydroxylamine **20** was achieved by using Zn in aqueous acetic acid as reducing system. The resulting pyrrolidine **22** was then protected at the nitrogen atom as the *N*-Cbz derivative **23**. The olefin **23** was then submitted to a typical hydroboration with 9-BBN²⁵ to afford primary alcohol **24** in 96% yield after purification (Scheme 1). Compound **24** was subjected to hydrogenolysis under 3 bar of hydrogen in acidic methanol to give **25** in 80.6% overall yield (six steps from **19**).

Compound **23** was treated with catalytic osmium tetroxide and *N*-methylmorpholine oxide (NMO) to give a 1.4:1 mixture of hydroxylated derivatives **26** and **27** in 87% combined yield. In seeking a higher selectivity for the hydroxylation reaction we checked different conditions including the use of AD-MIX α and β complexes.²⁶

In all cases the reaction proceeded with no selectivity, lower chemical yield and with the formation of a large number of byproducts. The benzyl and benzyloxycarbonyl protecting groups in **26** and **27** could be removed in the same reaction vessel by treatment of those compounds with hydrogen at 3 bar under catalytic conditions (10% Pearlman's catalyst) in acidic methanol. Purification of **28** and **29** by C-18 reverse-phase chromatography and further liophylization afforded those target compounds in 98% and 97% yield, respectively (Scheme 2).

Scheme 1. Synthesis of pyrrolidines with a long side chain. (i) allylmagnesium bromide, THF, 0 °C. (ii) H₂, 3 bar, Pd(OH)₂–C, MeOH–HCl, (iii) Zn, AcOH. (iv) Cbz₂O, dioxane. (v) 9-BBN, then H_2O_2 .

Scheme 2. Synthesis of pyrrolidines with a long side chain. (i) OsO₄, NMO, acetone–H₂O. (ii) H₂, 3 bar, Pd(OH)₂–C, MeOH–HCl.

The relative stereochemistry of the newly created stereogenic center in **26** and **27** was determined by transforming the major isomer **26** into the bicyclic **30** through a NaH-mediated intramolecular cyclization (Scheme 3). 2D NMR NOESY experiments (C_6D_6 , 500 MHz) indicated an NOE between H-1 and H-a and H-b of the hydroxymethyl group, thereby confirming that in **26** the hydroxyl group at the side chain possessed the indicated configuration.

Scheme 3. Determination of configuration for 26. (i) NaH, THF, rt.

Download English Version:

https://daneshyari.com/en/article/5225820

Download Persian Version:

https://daneshyari.com/article/5225820

Daneshyari.com