

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Salen and half-salen palladium(II) complexes: synthesis, characteriztion and catalytic activity toward Suzuki-Miyaura reaction

Ping Liu, Xiu-Juan Feng, Ren He*

State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), 158 Zhongshan Rd., 116012 Dalian, China

ARTICLE INFO

Article history:
Received 15 September 2009
Received in revised form
6 November 2009
Accepted 17 November 2009
Available online 4 December 2009

Keywords: Salen and half-salen ligands Palladium complexes Suzuki-Miyaura reaction

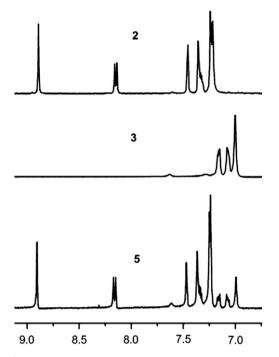
ABSTRACT

Salen and half-salen palladium(II) complexes (salden)Pd ($\mathbf{1}$, salden=N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-dimethylethylenediamine), (hsalph)PdCl ($\mathbf{2}$, hsalph= $\mathbf{3}$,5-di-tert- butylsalicylidene-1-iminophenylene-2-amine), and (salph)Pd ($\mathbf{4}$, salph=N,N'-bis(3,5-di-tert- butylsalicylidene)-1,2-phenylenediamine) were prepared and structurally characterized by X-ray crystallography. Complex $\mathbf{2}$ proved to exhibit high catalytic activity toward Suzuki-Miyaura reaction. Polyaromatic C₃-symmetric derivatives and various fluorinated biphenyl derivatives were readily achieved in good yields using Suzuki-Miyaura reaction catalyzed by complex $\mathbf{2}$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Palladium-catalyzed Suzuki-Miyaura reaction has been used extensively for the synthesis of natural products, pharmaceutical intermediates, conducting polymers, pesticides, and liquid crystals.^{1,2} By far, phosphine-based ligands remains to be the most popular selection in this reaction. 3-9 However, most of the phosphine ligands are air- and moisture-sensitive, and P-C bond degradation sometimes occurs at elevated temperatures, which leads to palladium aggregation and eventually affects the overall catalytic performance.¹⁰ Recent application of phosphine-free ligands, such as *N*-heterocyclic carbenes, ^{11–24} *N*,*N*,*O*-chelate ligand, ²⁵ *N*,*O*- or *N*,*N*-bidentate ligands, ^{9,26–32} aryloximes, ^{33,34} arylimines, ^{35–39} *N*-acylamidines, ⁴⁰ guanidine⁴¹ and simple amines ^{42–47} to Pd-catalyzed Suzuki-Miyaura reaction has opened new opportunities. The design of novel palladium complexes bearing phosphine-free ligands, which show high catalytic activity and selectivity toward C–C bond forming reactions is becoming increasingly important. In our previous work, bis(imino)pyridine palladium(II) complexes have been used successfully to catalyze Suzuki-Miyaura reaction in water. 48,49 Herein, we describe the synthesis and characterization of air- and moisture-stable palladium(II) complexes bearing Salen


or half-salen ligands and their catalytic activity toward Suzuki-Miyaura reaction.

2. Results and discussion

2.1. Synthesis of complexes 1-4

(Salden)Pd (1, salden=*N*,*N*′-bis(3,5-di-*tert*-butylsalicylidene)-1,2-dimethylethylenediamine) was prepared by the reaction of ligand L₁ with PdCl₂(CH₃CN)₂ in ethanol for 12 h at room temperature. However, the reaction of ligand **L₂** with PdCl₂(CH₃CN)₂ in the same condition afford product **5**, rather than the expected complex (salph)Pd (**4**, salph=*N*,*N*′-bis(3,5-di-*tert*-butylsalicylidene)-1,2phenylenediamine). We speculated that product 5 should consist of (hsalph)PdCl (2, hsalph=3,5-di-tert-butylsalicylidene-1-iminophenylene-2-amine) and 3, which were formed by the reaction of PdCl₂(CH₃CN)₂ with ligand L₃ and benzene-1,2-diamine derived from the hydrolyzation of ligand L2, respectively. To verify this hypothesis, complexes 2 and 3 were prepared by reaction of PdCl₂(CH₃CN)₂ with the corresponding ligands in EtOH. Comparative studies of ¹H NMR (Fig. 1), ¹³C NMR, IR spectra, HRMS (EI), and element analysis indicated that product 5 surely consist of complexes 2 and 3 (molar ratio, 2:3=4:1). Finally complex 4 was synthesized using another method that the CHCl₃ solution of ligand L₂ reacted with the CH₃CN solution of PdCl₂(CH₃CN)₂ for 1 h at reflux condition (Scheme 1). The structures of complexes 1, 2, and 4 were further confirmed by X-ray crystallography. The crystal structures

^{*} Corresponding author. Tel.: +86 0411 39893861; fax: +86 0411 39893687. E-mail address: liuping1979112@yahoo.com.cn (R. He).

Figure 1. 1 H NMR spectra (aromatic region) of complexes **2**, **3**, and product **5** (400 MHz, DMSO- d_{6}).

of complexes **1**, **2**, and **4** are shown in Figures 2–4. Selected bond lengths and angles are summarized in Table 1. The geometries of **1**, **2** and **4** is a distorted square planar, and the Pd–N bond lengths (Pd(1)–N(1) 1.964(17) Å, Pd(1)–N(2) 2.025(19) Å) of **2** are slightly

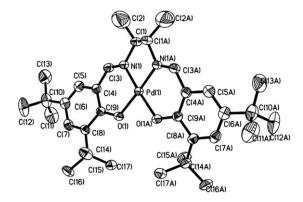


Figure 2. ORTEP drawing of complex 1.

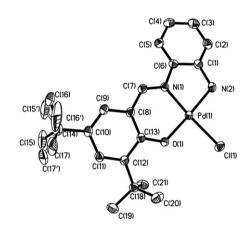


Figure 3. ORTEP drawing of complex 2.

$$t \cdot Bu \longrightarrow OH \longrightarrow HO \longrightarrow t \cdot Bu \longrightarrow PdCl_2(CH_3CN)_2 \longrightarrow t \cdot Bu \longrightarrow I \cdot Bu \longrightarrow$$

Scheme 1. Synthesis of complexes 1-4.

Download English Version:

https://daneshyari.com/en/article/5225989

Download Persian Version:

https://daneshyari.com/article/5225989

<u>Daneshyari.com</u>