Tetrahedron

Tetrahedron 62 (2006) 10747-10752

'Reductive ozonolysis' via a new fragmentation of carbonyl oxides

Chris Schwartz, Joseph Raible, Kyle Mott and Patrick H. Dussault*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States

Received 12 June 2006; revised 13 August 2006; accepted 13 August 2006 Available online 28 September 2006

Abstract—This account describes the development of methodologies for 'reductive' ozonolysis, the direct ozonolytic conversion of alkenes into carbonyl groups without the intermediacy of 1,2,4-trioxolanes (ozonides). Ozonolysis of alkenes in the presence of DMSO produces a mixture of aldehyde and ozonide. The combination of DMSO and Et₃N results in improved yields of carbonyls but still leaves unacceptable levels of residual ozonides; similar results are obtained using secondary or tertiary amines in the absence of DMSO. The influence of amines is believed to result from conversion to the corresponding N-oxides; ozonolysis in the presence of amine N-oxides efficiently suppresses ozonide formation, generating high yields of aldehydes. The reactions with amine oxides are hypothesized to involve an unprecedented trapping of carbonyl oxides to generate a zwitterionic adduct, which fragments to produce the desired carbonyl group, an amine, and ¹O₂. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The ozonolysis of alkenes, first reported in 1840, remains one of the most important methods for oxidative cleavage of alkenes. For example, a SciFinder search for ozonerelated conversion of terminal alkenes to aldehydes returns thousands of examples. A powerful oxidant directly available from oxygen, ozone is also an attractive reagent for sustainable oxidations. However, whereas alkene cleavage with high-valent metal oxides typically results in the direct formation of aldehydes and ketones, ozonolysis initially generates ozonides and other peroxides, species often capable of spontaneous and dangerously exothermic decomposition reactions.² The formation of energetic intermediates is particularly problematic for large-scale processes, but even laboratory-scale reactions must typically be accompanied by a subsequent work-up reaction, most often a reduction.^{3,4} The most effective reducing agents can lead to problems with functional group compatibility (Pt/H₂, BH₃, Zn/HOAc, LiAlH₄) or product separation (PPh₃).⁵ The use of more selective and easily separated reagents (Me₂S) can leave high concentrations of residual 1,2,4-trioxolane (ozonide), leading to explosions upon reaction concentration.⁶ We hoped to exploit the mechanism of alkene ozonolysis to achieve the direct production of carbonyl products, avoiding generation or isolation of peroxidic intermediates. In this account, we describe the development of a practical methodology for 'reductive ozonolysis' in which trapping and fragmentation of carbonyl oxides by amine oxides results in the direct formation of aldehydes and ketones.⁷

In approaching this problem, it is instructive to overview the mechanism of alkene ozonolysis (Fig. 1).8 A highly exothermic cycloaddition of ozone with an alkene generates a primary ozonide (1,2,3-trioxolane). The primary ozonide has limited stability, and, under typical reaction conditions (>-80 °C) undergoes immediate cycloreversion to a carbonyl oxide and a carbonyl. The fate of the carbonyl oxide, which is so short lived as to be undetectable in solutionphase chemistry, determines the distribution of reaction products.¹⁰ A nearly activationless cycloaddition of the carbonyl oxide with a reactive dipolarophile, often the cogenerated aldehyde or ketone, produces ozonides or 1.2.4trioxolanes. 11 Alternatively, trapping of carbonyl oxides by unhindered alcohols¹² and related nucleophiles generates hydroperoxyacetals and similar addition products. 8,10 When neither addition nor cycloaddition pathways are available, carbonyl oxides can undergo dimerization or oligomerization to furnish 1,2,4,5-tetraoxanes or polymeric peroxides.¹³ For simplicity, only ozonide formation is illustrated.

Figure 1. Overview of alkene ozonolysis.

^{*} Corresponding author. Tel.: +1 402 472 3634; fax: +1 402 472 9402; e-mail: pdussault1@unl.edu

Ozonides possess a dangerous combination of kinetic stability and thermochemical instability; they are typically isolable yet often capable of spontaneous and dangerously exothermic decomposition reactions.² Our goal was to develop methodology that would avoid generation of ozonides or other peroxides, and instead directly deliver the desired carbonyl products. Our approach required a reagent capable of intercepting the primary ozonide, the carbonyl oxide, or the ozonide (1,2,4-trioxolane), yet compatible with ozone, one of the strongest oxidants in organic chemistry. Ozonides appeared too stable to be the targets of such an approach. Primary ozonides (1,2,3-trioxolanes) have been generated at very low temperature and separately reacted with strong nucleophiles, but this process has not been accomplished in the presence of ozone. 14 This leaves carbonyl oxides, the most reactive intermediates in an ozonolysis, as the most logical targets for in situ capture.

2. Results and discussion

Our initial approach focused on cycloaddition of carbonyl oxides with X=O reagents (Fig. 2). An optimal trapping reagent would be a readily available and reactive dipolarophile containing a central atom (X) in an incompletely oxidized state. The derived heteroozonides would be expected to undergo internal fragmentation with liberation of O=X=O and a carbonyl group, achieving net oxidation of the X=O reagent and net reduction of the carbonyl oxide. Literature reports suggested that sulfinyl dipolarophiles reduce carbonyl oxides, presumably via intermediate 3-thia-1,2,4-trioxolanes. Moreover, electron rich carbonyl oxides preferentially oxidize sulfoxides (to sulfones), even in the presence of a sulfide. A similar strategy has recently been applied to the reduction of persulfoxides with aryl selenoxides.

Our investigations began with dimethyl sulfoxide (DMSO). Whereas ozonolysis of decene provides a nearly quantitative yield of isolated ozonide (3-octyl-1,2,4-trioxolane),¹⁸ the same reaction in the presence of 2.0 equiv of DMSO generated a mixture of aldehyde and ozonide in which the former was predominant (Table 1). While these results were intriguing, we were unable to find conditions able to effectively suppress ozonide formation. For example, the use of 5 equiv of DMSO offered little improvement in yield of aldehyde,¹⁹ while attempts to employ even larger amounts of reagent resulted in phase separation or freezing.

The addition of protic nucleophiles provided an opportunity to test the role of the carbonyl oxide in the DMSO-promoted reductions (Table 2). The presence of methanol resulted in the formation of hydroperoxyacetal at the expense of aldehyde. The same effect was observed to a lesser extent for isopropanol, as would be expected based upon the reported rates of trapping by primary and secondary alcohols. ^{10,12}

Figure 2. Capture by reductive dipolarophile.

Table 1. Reduction with DMSO

DMSO (equiv) 7	Γ (°C)	Aldehyde (%) ^a	Ozonide (%) ^a
0 -	-78 or 0	Trace	>95%
2 -	-78	52	35
2	0	61	22

a Isolated yield.

Table 2. Competition for carbonyl oxide

ROH	Aldehyde (%) ^a	Ozonide (%) ^a	Hydroperoxide (%) ^a
МеОН	11	16	31
i-PrOH	34	19	23

^a Isolated yield.

The DMSO-mediated reduction was unaffected by the addition of a proton donor (HOAc), but was actively suppressed by $Sc(OTf)_3$. Although we had hoped that the Lewis acid might serve to bring together the reactants, the results suggest that the Sc^{+3} is simply sequestering the sulfoxide. In contrast, ozonolysis at -78 °C in the presence of both DMSO and Et_3N achieved a noticeable improvement in the yield of aldehyde (Table 3); an even better yield was obtained upon reaction at 0 °C. The formation of aldehyde appeared to be enhanced by trace moisture; performing the reaction with deliberate exclusion of water (including drying the incoming stream of O_3/O_2 through a -78 °C U-tube), resulted in a reduced yield. For reasons that would later become clear, the use of excess Et_3N slowed the reaction and resulted in the isolation of recovered decene (not shown).

The combination of DMSO and Et₃N provides a useful protocol for syntheses of aldehydes and ketones (Table 4).

To our surprise, a control reaction investigating ozonolysis in the presence of Et₃N furnished better yields of nonanal than had been obtained with DMSO (Table 5). The amine-promoted reduction appeared general for secondary and tertiary amines; primary amines, which react with carbonyl oxides to form oxaziridines, were not investigated.²⁰ The use of anhydrous conditions again resulted in a decreased yield of aldehyde.

Table 3. Reaction with DMSO and Et₃N

$$\begin{array}{c} \text{O}_{3}/\text{O}_{2}, \text{CH}_{2}\text{CI}_{2}, \\ \text{DMSO (2 eq)} \\ \hline \text{Et}_{3}\text{N (1 eq)} \end{array} \begin{array}{c} \text{O} \\ \text{32} \\ \text{4} \end{array} \begin{array}{c} \text{O} \\ \text{O} \\ \text{O} \end{array}$$

T (°C)	Wet/dry	Aldehyde (%) ^a	Ozonide (%) ^a
-78	Dry	43	17
-78	Dry Wet ^b	65	29
0	Wet	84	12

a Isolated yield.

^b H₂O (0.05%) in CH₂Cl₂.

Download English Version:

https://daneshyari.com/en/article/5226099

Download Persian Version:

https://daneshyari.com/article/5226099

<u>Daneshyari.com</u>