Tetrahedron 65 (2009) 9765–9771

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/00404020)

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Asymmetric syntheses of 6-deoxyfagomin, p-deoxyrhamnojirimycin, and D-rhamnono-1,5-lactam

Rui Fu^a, Yu Du^a, Zhao-Ying Li^a, Wei-Xuan Xu^a, Pei-Qiang Huang^{a,b,}*

a Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China

^b State Key Laboratory of Bioorganic and Natural Products Chemistry, 354 Fenglin Lu, Shanghai 200032, PR China

article info

Article history: Received 29 July 2009 Received in revised form 13 September 2009 Accepted 18 September 2009 Available online 22 September 2009

Keywords: Aza-sugars Asymmetric synthesis Building block Samarium diiodide

ABSTRACT

N-Allyl protected 3-O-benzyloxglutarimide 11 was synthesized as a useful variant of the chiral building block 10. This modification allowed a high-yielding deprotection of the allyl group from the lactam intermediate 14. Starting from this building block, the asymmetric syntheses of aza-sugars 6-deoxyfagomine (2), D-rhamnono-1,5-lactam (6), as well as D-deoxyrhamnojirimycin (5) have been achieved in high regio- and/or diastereo-controlled manner.

- 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Aza-sugars (also known as iminosugars) are polyhydroxylated alkaloids with either five- or six-membered, mono- or bi-cyclic structures.¹ Being 'nitrogen-in-the-ring' analogs of pyranoses and furanoses, many aza-sugars were found to be potent inhibitors of carbohydrate-processing enzymes involved in important biological systems. Consequently, they are promising for the treatment of metabolite disorder-associated diseases such as diabetes, cancer, AIDS, and viral infections.^{[1](#page--1-0)} Indeed, Miglitol^{[2](#page--1-0)} and Zavesca³ (Miglustat) have been launched on market as drugs for the treatment of Type II diabetes and Gaucher's disease, respectively.

Fagomine^{[4,5](#page--1-0)} (1) and 6-deoxyfagomine⁴ (2) (Fig. 1) are two polyhydroxylated piperidine alkaloids isolated from Lycium chinense (Solanaceae) roots. Before that, the occurrence of fagomine^{[5](#page--1-0)} and its stereoisomers in the leaves of Xanthocercis zuinbesiaca (Legumi-nosae) has already been reported.^{[5a](#page--1-0)} Fagomine and 3-*epi*-fagomine were shown to have activities against mammalian α -glucosidase and β -galactosidase,^{[5a](#page--1-0)} and have a potent antihyperglycaemic effect in streptozocin-induced diabetic mice and a potentiation of glu-cose-induced insulin secretion.^{[5b](#page--1-0)} 1,6-Dideoxynojirimycin (3) was isolated as a new sugar-mimic alkaloid from the Pods of Angylocalyx

Corresponding author. Fax: $+86$ 592 2186400. E-mail address: pqhuang@xmu.edu.cn (P.-Q. Huang).

pynaertii. 6 6 α-Homo-L-rhamnojirimycin **4** is an effective inhibitor of naringinase.⁷ In addition, p-deoxyrhamnojirimycin (DRJ) (5) , 8a,b 8a,b 8a,b and its enantiomer L-deoxyrhamnojirimycin (LRI) , $8b$, c and D -rhamnono-1,5-lactam 8b 8b 8b (6) have also been synthesized for biological test. The synthesis of aza-sugars, their stereoisomers, and analogs have attracted considerable attention, and a number of methods have been developed.^{[1](#page--1-0)}

6-deoxy-fagomine (**2**) fagomine (**1**) 1,6-dideoxynojirimycin (**3**)

In continuation of our study on the development of protected 3-hydroxyglutarimide-based synthetic methodology, 9 we wish to report N-allyl protected 3-O-benzyloxyglutarimide 11 as

^{0040-4020/\$ –} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.09.083

a beneficial variant of the building block 10, and its application to the enantioselective syntheses of 6-deoxyfagomine (2) , p-rhamnono-1,5-lactam (6) , and p-deoxyrhamnojirimycin (5) .

2. Results and discussion

The retrosynthetic analysis of 6-deoxyfagomine (2) is outlined in Scheme 1, which featured the introduction of the hydroxyl group at C-4 via the α , β -unsaturated mixed imide 7. The latter was envisioned to be prepared from lactam $\mathbf{9},^{10}$ $\mathbf{9},^{10}$ $\mathbf{9},^{10}$ which is available from the known building block 10. In practicing this plan, it was observed that the ceric ammonium nitrate (CAN)-mediated oxidative cleavage of the p-methoxybenzyl group (PMB) in lactam 9 produced lactam 8 in only 60% yield. We decided to develop the N-allyl protected^{[11](#page--1-0)} glutarimide derivative **11** as an improved building block for our general synthetic program.⁹

Scheme 1.

The building block 11 was synthesized from (S)-glutamic acid and allylamine by the method established previously, $10,12$ namely, diazodation, lactone-amide formation, ring expansion, and O-benzylation (Scheme 2). Methyl magnesium iodide addition, followed by boron trifluoride etherate-mediated reductive dehydroxylation with triethylsilane produced lactam 14 in excellent regio- and diastereo-selectivities. The stereochemistry of the major diastereomer 14 was tentatively assigned as trans on the basis of the observed vicinal coupling constant $(J_{5,6}=1.4 \text{ Hz}; \text{ cf. } N\text{-PMB})$ protected analog: $J_{5,6}$ =1.5 Hz for *trans*-diastereomer,^{10a} and $J_{5.6}$ =4.6 Hz for cis-diastereomer^{[10c](#page--1-0)}), that was confirmed after final conversion of 14 into the natural product 6-deoxyfagomine (2). Cleavage of the lactam N-allyl group was achieved by heating 14 with rhodium trichloride hydrate, in refluxing ethanol, 13 which afforded lactam 8 in 88% yield.

Scheme 2.

To introduce the carbon–carbon double bond, lactam 8 was converted into its activated form, namely, the mixed imide (2R,3S)-

15, by the reaction with $(Boc)_{2}O$ [DMAP (cat.), TEA, $CH_{2}Cl_{2}$]. Successive treatment of 15 with LDA (THF, -78 $^{\circ}$ C) and PhSeBr produced an α -phenylselenide derivative,¹⁴ which, without purification, was subjected to oxidation with H_2O_2 in wet CH₂Cl₂ at rt to give directly 7 in 74% overall yield from compound 15 (Scheme 3). For the introduction of the hydroxyl group at C-4, an epoxidation–regiose-lective SmI₂ reduction^{[15](#page--1-0)} procedure was envisioned. Thus, in the presence of tetrabutyl ammonium fluoride, and potassium carbonate, α , β -unsaturated mixed imide 7 was treated with tert-butyl hydroperoxide (TBHP) in $DMF^{15a,16}$ to furnish epoxide 16 as a single diastereomer in 92% yield. The stereochemistry of the product was assumed to be trans with respect to OBn group on the basis of the steric effect of the benzyloxyl group in the epoxidation, 17 that was confirmed after its transformation into the natural product 2. Reductive ring-opening of the epoxide 16 with samarium diiodide¹⁵ yielded regioselectively the 4-hydroxy-2-piperidinone derivative 17 in high yield. Compound 17 was subjected successively to N-deprotection with TFA, lactam reduction with borane dimethyl sulfide complex, and O-debenzylation under catalytic hydrogenolytic conditions to give 6-deoxyfagomine (2) in high overall yield. The physical $\{[\alpha]_D^{20}$ –10.8 (c 0.[4](#page--1-0), H₂O); lit.⁴ $[\alpha]_D^{20}$ –11.1 (c 0.1, H₂O)} and spectroscopic data of our synthetic compound were in agreement with those reported for the natural product.^{[4](#page--1-0)}

To further explore the possibility to use mixed imide 7 for the synthesis of other aza-sugars such as 4, 5, and 6, the dihydroxylation of 7 was investigated. In the presence of 1.5 molar equiv of citric acid, treatment of α , β -unsaturated lactam 7 with the co-oxidant system OsO₄ (cat.)–NMO in a mixed solvent system¹⁸ (*t*-BuOH/H₂O,1:1) at rt for 18 h produced the dihydroxylated product 20 as a single diastereomer in 76% yield [\(Scheme 4\)](#page--1-0). Stirring compound 20 with $CF₃CO₂H$ in $CH₂Cl₂$ cleaved the Boc group to give lactam 21 in 90% yield. Hydrogenolysis of lactam 21 in the presence of 10% Pd $(OH)_2/C$ led to the target molecule D -rhamnono-1,5-lactam (6) in 92% yield. The physical and spectroscopic data of the synthetic compound were in agreement with those of natural product {[α] $_D^{20}$ –15.6 (c 0.4, H₂O) {lit.^{[8b](#page--1-0)} [α]²⁰ -16.6 (c 0.27, H₂O)}.

On the other hand, reduction of lactam 21 with $BH₃·SMe₂$ in THF at rt for 4 h gave piperidine 22 in 97% yield [\(Scheme 5\)](#page--1-0). Subjection of 22 to catalytic hydrogenolytic conditions $(H_2, 10\%Pd/C)$ led to **D-deoxyrhamnojirimycin** (5) in 70% yield. The physical and Download English Version:

<https://daneshyari.com/en/article/5226366>

Download Persian Version:

<https://daneshyari.com/article/5226366>

[Daneshyari.com](https://daneshyari.com)