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a b s t r a c t

We present a solution to the conservation form (Eulerian form) of the quantum hydrody-
namic equations which arise in chemical dynamics by implementing a mixed/discontinu-
ous Galerkin (MDG) finite element numerical scheme. We show that this methodology is
stable, showing good accuracy and a remarkable scale invariance in its solution space. In
addition the MDG method is robust, adapting well to various initial-boundary value prob-
lems of particular significance in a range of physical and chemical applications. We further
show explicitly how to recover the Lagrangian frame (or pathline) solutions.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Quantum hydrodynamics (QHD) has engendered substantial activity in the field of theoretical chemical dynamics, where
one may refer to Wyatt et al. [40] for a comprehensive introductory overview of the numerous recent results emerging from
this blossoming field.
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The basic idea emerging from quantum chemistry in the context of QHD is to employ the time-dependent Schrödinger
equation (TDSE) to solve for the dynamical properties (probability densities, ‘‘particle” velocities, etc.) of chemical systems.
In the same spirit in which the de Broglie–Bohm interpretation (see [17,5,6]) of quantum mechanics may be used to recover
‘‘trajectories” of individual fluid elements along the characteristics of motion of the solution, the QHD equations of Madelung
and Bohm are derived as formally equivalent to the TDSE and thus comprise an alternative route to solutions which generate
quantum trajectories that follow particles along their respective paths (see [40,19] for a comprehensive overview).

These solutions hold particular significance, where, in the context of the QHD formulation, it is possible to resolve the
chemical dynamics of a vast number of reaction mechanisms known to have pathways dominated by quantum tunneling
regimes. Some of these systems include proton transfer reactions (for example see Fig. 1), conformational inversions, biolog-
ically important redox reactions in enzymatic catalysis reactions (see Fig. 2), and proton-coupled electron transfer reactions
(refer to [28,27]). It is not yet clear if these types of methods may also have application at higher energies, for example in the
halo nuclei tunneling occurring in fusion reactions (as seen, for example, in [18]).

Substantial research has been done in quantum hydrodynamics to find the best and fastest computational methodology
for solving this system of equations. In the standard methodology presented using the quantum trajectory method (QTM),
for example, solutions to the QHD equations are found by transforming the system of equations, which is generally posited in
the Eulerian fixed coordinate framework (see [25,19,15,14]), into the same set of equations in the Lagrangian coordinate
framework, which effectively follows solutions along particle trajectories; or along so-called ‘‘Bohmian trajectories.” The
transformation from the Eulerian to the Lagrangian frame leads to a set of coupled equations which solve for two unknowns:
the quantum action Sðt;~rÞ and the probability density or quantum amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffi
.ðt;~rÞ

p
¼ Rðt;~rÞ along the trajectories~rðt; xÞ (e.g.

see [40] box 1.2). The obvious advantage of the Lagrangian framework is reduced computational times, since solutions are
only computed along a set of chosen trajectories; while clearly the disadvantage is the possibility of obscuring structure hid-
den within the continuum of the full solution, which may only emerge properly in convergent numerical schemes, and also
the increased complications of transposing into more complicated settings: such as with functional or time dependencies on
the potential term V, or including dissipative or rotational vector fields.

In addition, the numerical solutions to the above mentioned Lagrangian formulations have demonstrated characteristic
behaviors which introduce certain technical difficulties at the level of formal analysis. First, the system of equations are stiff,
which is to say, solutions to the system may locally or globally vary rapidly enough to become numerical unstable without
reducing numerically to extremely small timesteps. Furthermore, there exists the so-called ‘‘node problem,” which is char-
acterized by singularity formation (see [40] for characterization of node types) along particle trajectories. Another issue
which arises is obtaining unique solutions, since there is not a unique choice of trajectories in the Lagrangian formulation
(see for example Section 6 and Appendix A). And finally, boundary data is often treated without regard to the (often substan-
tial) numerical residuals introduced in the weak entropy case, or taking into account consistency between the TDSE and the
QHD system of equations (see for example [30] and Section 3).

We introduce an alternative formulation to the standard solutions described above in . and S and tracked with respect to
the Lagrangian coordinate frame which is motivated by work of Gardner, Cockburn, et al. (see [15,16,8]). Instead, we keep the
system in its conservation form (instead of in a primitive variable form) in the Eulerian coordinate system (see [25]), and
solve for the density . ¼ .ðt; xÞ and the particle velocity v ¼ vðt; xÞ (instead of the quantum action S). We show that these
solutions may be used to easily recover the variables S and w in a single step; and may with little difficulty be transformed
into their Lagrangian coordinate frame counterpart solutions .ðt;~rÞ;vðt;~rÞ; Sðt;~rÞ and wðt;~rÞ, using the conservation equation
(continuity equation), or by solving for pathlines in the sense of classical mechanics, or by any number of alternative so-
called ‘‘offset methods.” Additionally, our solutions demonstrate a type of resolution invariance, which is to say that the
behavior of our solutions are qualitatively equivalent at varying spatial resolutions, and compare favorably with solutions
to the formally equivalent TDSE. As a consequence, our conservation-based formulation is computationally competitive with
Lagrangian formulations, up to a type of ‘‘formal accuracy” in the trajectory solutions.

Our solutions, as the Lagrangian formulated solutions mentioned above, still demonstrate a stiff behavior. However, also
as the Lagrangian solutions above, and similarly to the classical CFL condition in fluid mechanics, we consider this a prohib-
itive but not insurmountable computational difficulty. On the other hand, our solutions to the conservation form of QHD do
not demonstrate the node problem (at least on Gaussian wavepackets) as expected, as the only type of node our formulation

Fig. 1. Here we have the intramolecular rearrangement of the aryl radical 2,4,6-tri-tert-butylephenyl to 3,5-di-tert-butylneophyl (see [7] for details).
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