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a b s t r a c t

In this paper, we present a method of decomposing a highly oscillatory wave field into a
sparse superposition of Gaussian beams. The goal is to extract the necessary parameters
for a Gaussian beam superposition from this wave field, so that further evolution of the
high frequency waves can be computed by the method of Gaussian beams. The methodol-
ogy is described for Rd with numerical examples for d ¼ 2. In the first example, a field gen-
erated by an interface reflection of Gaussian beams is decomposed into a superposition of
Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data
in the second example is not a superposition of a finite number of Gaussian beams. The
wave field to be approximated is generated by a finite difference method for a geometry
with two slits. The accuracy in the decomposition increases monotonically with the
number of beams.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider the wave equation for x 2 Rd,

�u � @ttu� cðxÞDu ¼ 0; t > 0
u ¼ f ðxÞ; t ¼ 0 ð1Þ
@tu ¼ gðxÞ; t ¼ 0:

This equation is well posed in the energy norm,

kukE ¼
Z

Rd

1
cðxÞ jut j2 þ jruj2
� �

dx
� �1=2

;

where r is the gradient with respect to the spatial variables.
High frequency solutions to this equation are necessary in many scientific applications. While the equation has no scale,

‘‘high frequency” in this case means that there is a scale separation between the wave length and the domain of interest and
that the sound speed cðxÞ does not greatly vary on the scale of the oscillations. In such situations, direct discretization meth-
ods are notoriously computationally costly. To circumvent this, one often relies on asymptotically valid approximations such
as geometric optics [1], geometrical theory of diffraction [2], and Gaussian beams [3–7].
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To set notation and remind the reader of the high frequency methods that this paper is focused on, we briefly review geo-
metric optics and Gaussian beams. For a more detailed description of Gaussian beams with the similar notation, we refer the
reader to [8,9]. In the high frequency limit with k the large high frequency parameter, one can look for special solutions of the
wave equation that take the geometric optics form,

uðx; tÞ � aðx; tÞeik/ðx;tÞ: ð2Þ

Then, solving the wave equation is reduced to determining the amplitude function aðx; tÞ and the phase function /ðx; tÞ. Upon
substituting (2) into the wave equation and collecting like powers of k, one obtains the eikonal equation for the phase and
the transport equation for the amplitude,

j/t j
2 � cðxÞjr/j2 ¼ 0

2/tat � 2cðxÞr/ � ra ¼ �a�/:

In the method of geometric optics, these equations are solved by PDE techniques or by ODE ray tracing [1] for a real value
phase and amplitude. Alternatively, in the Gaussian beams method, one relaxes the conditions on / and a to allow them to
take on complex values and one expresses them as Taylor polynomials about a characteristic ray, ðXðsÞ; T ðsÞÞ, that originates
at some point ðy; 0Þ with ray parameter s:

/ðx; t; y; sÞ ¼ UðsÞ þUtðsÞðt � T Þ þrUðsÞ � ðx�XÞ þ 1
2
½ðx; tÞ � ðX ; T Þ� � Hess½U�ðsÞ½ðX ; T Þ � ðx; tÞ� ð3Þ

aðx; t; y; sÞ ¼ AðsÞ: ð4Þ

Here, Hess½U� is Hessian matrix of U (which includes the second order x and t derivatives) and the above coefficients are de-
fined through the ray tracing system of ODEs (using the shorthand notation s ¼ Ut ; n ¼ rU;M ¼ Hess½U� and _¼ d

ds):

_T ¼ 2s
_X ¼ �2cðxÞn
_s ¼ 0
_n ¼ jnj2rc
_U ¼ 0
_M ¼ �MDM �MB� BtM � C
_A ¼ �A�U

The matrices B, C, and D are ðdþ 1Þ � ðdþ 1Þ dimensional and defined as derivatives of pðx; t; n; sÞ ¼ jsj2 � cðxÞjnj2:

ðBÞkl ¼
@2p
@fk@zl

; ðCÞkl ¼
@2p
@zk@zl

; ðDÞkl ¼
@2p
@fk@fl

;

with z ¼ ðx; tÞ and f ¼ ðn; sÞ. Thus defined, / and a do not satisfy the eikonal and transport equation exactly, except on the
ray; nonetheless, u given by Eq. (2) will be an asymptotic solution of the wave equation (see [8,9]).

To obtain a Gaussian beam solution, one has to determine the Taylor coefficients and the initial beam center y. Note that
due to the relations between these coefficients that the eikonal equation (and its derivatives) provide, one only needs to
determine the derivatives that involve x to determine all of the coefficients (up to the sign of /t). Also, although in the
expression for / and a both s and t appear as separate parameters, they are related through the condition T ðsÞ ¼ t. What
makes this type of construction give a valid asymptotic solution to the wave equation is that the x derivative block of the
imaginary part of the Hessian matrix is a positive definite matrix. One can show that if this condition holds at t ¼ 0, it will
hold for all t, see [8]. This gives the name of the method, as at any given t the magnitude of the solution has a Gaussian shape.

Whether one uses geometric optics or Gaussian beams, an important fact to recognize is that the initial data for the wave
equation, f and g in Eq. (1), have to fit with the special form of the solution. For geometric optics we need the initial data to
top order in k to be of the form, f ðxÞ ¼ aðxÞ expðik/ðxÞÞ, with real valued phase /, while for Gaussian beams, we need it to be
f ðxÞ ¼ aðx; yÞ expðik/ðx; yÞÞ, where a and / given by Taylor expansions about y. To see the required form for g, one recognizes
that a and / are functions of t as well and differentiates.

Finally, one can exploit the linear nature of the wave equation by finding the solution for N different initial data. Adding
these together gives a solution to the wave equation with initial data given by the sum of their individual initial data. For the
case of Gaussian beams, this means that the solution we can obtain has initial data of the form,

XN

n¼1

anðx; ynÞeik/nðx;ynÞ:

In many applications, the available data is not typically in the form required for geometric optics or Gaussian beams. Thus we
need to re-represent it in the appropriate from. A common method is to represent the field using the Fourier transform, so
that it is in the form of an amplitude function times an exponential involving a phase [5,7]. This approach has some
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