
Integral equation methods for elliptic problems with boundary
conditions of mixed type q

Johan Helsing *

Numerical Analysis, Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 LUND, Sweden

a r t i c l e i n f o

Article history:
Received 28 April 2009
Received in revised form 28 August 2009
Accepted 5 September 2009
Available online 11 September 2009

PACS:
02.30.Rz
46.15.�x

Keywords:
Mixed boundary value problem
Second kind integral equation
Potential theory
Elasticity

a b s t r a c t

Laplace’s equation with mixed boundary conditions, that is, Dirichlet conditions on parts of
the boundary and Neumann conditions on the remaining contiguous parts, is solved on an
interior planar domain using an integral equation method. Rapid execution and high accu-
racy is obtained by combining equations which are of Fredholm’s second kind with com-
pact operators on almost the entire boundary with a recursive compressed inverse
preconditioning technique. Then an elastic problem with mixed boundary conditions is for-
mulated and solved in an analogous manner and with similar results. This opens up for the
rapid and accurate solution of several elliptic problems of mixed type.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The need to solve elliptic problems with different types of boundary conditions on different parts of a connected bound-
ary often arises in computational physics. Elastic specimens partly held fixed and partly subjected to traction [2,18] and
loaded composites with interface cracks [6,17] are common setups with mixed Dirichlet- and Neumann-type conditions.
More generally, elliptic problems for multiphase materials where some continuity conditions hold on internal interfaces
and loads are applied to a connected outer boundary belong to this class. Grain boundary diffusion in finite-size polycrystals
[20,24] and coupled Stokes and Darcy flow [22] are two examples. Solvers based on integral equations, which are superior for
pure boundary conditions, are not always applicable for mixed conditions. When they do apply and the conditions vary on a
connected boundary, see [11] for an overview, they are often less advantageous than for pure boundary conditions.

It is hard to find integral equations for mixed problems that are of Fredholm’s second kind with operators that are com-
pact on the entire boundary. This is the essential difficulty when boundary conditions vary on contiguous boundary parts
[23]. The second-kind-compact-operator property is what makes integral equation methods competitive. This property helps
in retaining the condition number of the underlying mathematical problem throughout the solution process.

Using primitive functions of Neumann data, one can sometimes find integral equations for mixed planar problems that
are singular with discontinuous coefficients in the sense of Section 116 of [15]. Such equations may require reduction,
that is, the application of a pseudo-inverse to the dominant operator, for well-posedness. A great advantage with reduction
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is that it transforms a singular integral equation into one of Fredholm’s second kind with operators that are compact on the
entire boundary, provided the boundary is smooth. Reduction is certainly efficient when high accuracy is of interest [6,9].
Drawbacks include that it takes some effort to construct the pseudo-inverse and that it is hard to treat non-smooth bound-
aries [3] and boundary conditions that change type more than once. Mikhlin uses reduction to derive a second kind equation
with compact operators for the mixed problem of the theory of elasticity, see Eq. (17) of Section 72 in [13]. This equation is
not written out on explicit form and has, to our knowledge, never been used for numerics.

If one gives up the search for second kind equations with compact operators and is content with discretizing and solving
just any integral equation, chiefly for the benefit of dimensionality reduction, the numerical results could suffer. Especially so
in the vicinity of singular boundary points, that is, points where the boundary conditions change type and where the solution
may have a complicated asymptotic behavior. Adaptive mesh refinement close to such points is often not a good idea since it
can excite severe ill-conditioning. In general, any attempt at mesh refinement increases ill-conditioning in the absence of the
second-kind-compact-operator property.

This paper takes a new approach to mixed boundary conditions. Like the classic works [13,15] we strive for integral equa-
tions that behave as if they were of Fredholm’s second kind with compact operators everywhere. But while the classic works
use reduction to achieve this, we use recursive compressed inverse preconditioning (a local multilevel technique developed to
deal with weaker singularities stemming from boundary irregularities [8]). The advantages with trading reduction for recur-
sive compressed inverse preconditioning are flexibility in modeling and simplicity in programming. Several types of compli-
cations can be treated within the same framework.

For brevity we only consider two problems: Laplace’s equation in the plane, introduced in Section 3 and used to illustrate
general ideas, and planar elasticity, chosen as to let these ideas work in a more challenging setting in Section 9. A key ingre-
dient in the transition from Laplace’s equation to elasticity is the particular choice of representation (55) and (56). Sections 2,
5–7 discuss quadrature techniques for non-smooth kernels and review recursive compressed inverse preconditioning in the
present environment. The computational process is straight-forward, once these issues are settled, and Sections 8 and 10
present very accurate results.

2. Discretization and quadrature

We use Nyström discretization for the integral equations and composite 16-point Gauss–Legendre quadrature as our ba-
sic quadrature tool. To keep the notation short we make no distinction between points or vectors in a real plane R2 and
points in a complex plane C. All points will be denoted z or s. Let C be the smooth boundary of a simply connected domain
X and let C be given orientation. Let sðtÞ, ta < t 6 tb, be a parameterization of C and let there be nK quadrature panels Kj,
j ¼ 1; . . . ;nK, of approximately equal length placed on C. Then one can easily compute N ¼ 16nK nodes tj and weights
wj; j ¼ 1; . . . ;N, associated with integration in t. Let f be a layer density on C. The parameterization allows us to view f both
as function of position f ðsÞ and of parameter f ðtÞ. The argument indicates which view is taken in a particular situation. Dif-
ferentiation with respect to parameter t is indicated with a prime. The abbreviations sj ¼ sðtjÞ; fj ¼ f ðtjÞ; s0j ¼ s0ðtjÞ, and
f 0j ¼ f 0ðtjÞ are used.

We shall discretize several integral operators on C. If the integral kernel Kðs; zÞ and layer density f ðsÞ are piecewise
smooth, the basic quadrature

Z
C

f ðsÞKðs; sjÞds ¼
Z tb

ta

f ðtÞKðsðtÞ; sjÞs0ðtÞdt �
XN

k¼1

fkKðsk; sjÞs0kwk ð1Þ

should be accurate. If Kðs; zÞ is singular for s ¼ z, special techniques are needed to retain high accuracy. This section reviews
such techniques. Note that Nyström discretization of an integral equation means discretization of the integral operators at
each quadrature point sj; j ¼ 1; . . . ;N. The result of the discretization is a linear system with a square system matrix.

2.1. The Cauchy singular operator

We begin with the Cauchy singular integral operator

MCf ðsjÞ ¼
1
pi

Z
C

f ðsÞds
s� sj

; sj 2 C: ð2Þ

The integral is to be interpreted in the principal value sense. One option is to use global regularization

MCf ðsjÞ ¼ fj þ
1
pi

Z
C

ðf ðsÞ � fjÞds
s� sj

; sj 2 C: ð3Þ

The integral has a continuous integrand when f ðsÞ is continuous. It can be discretized with basic quadrature and differen-
tiation of f ðtÞ based on panelwise polynomial interpolation at the Legendre nodes.

A drawback with global regularization is that it may involve a fair amount of row summation for the diagonal elements of
the system matrix. A cheaper alternative, in this respect, is local regularization
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