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a b s t r a c t

Multigrid algorithms are developed for systems arising from high-order discontinuous
Galerkin discretizations of the compressible Navier–Stokes equations on unstructured
meshes. The algorithms are based on coupling both p- and h-multigrid (ph-multigrid)
methods which are used in nonlinear or linear forms, and either directly as solvers or as
preconditioners to a Newton–Krylov method.

The performance of the algorithms are examined in solving the laminar flow over an air-
foil configuration. It is shown that the choice of the cycling strategy is crucial in achieving
efficient and scalable solvers. For the multigrid solvers, while the order-independent con-
vergence rate is obtained with a proper cycle type, the mesh-independent performance is
achieved only if the coarsest problem is solved to a sufficient accuracy. On the other hand,
the multigrid preconditioned Newton–GMRES solver appears to be insensitive to this con-
dition and mesh-independent convergence is achieved under the desirable condition that
the coarsest problem is solved using a fixed number of multigrid cycles regardless of the
size of the problem.

It is concluded that the Newton–GMRES solver with the multigrid preconditioning yields
the most efficient and robust algorithm among those studied.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The inadequacy of current production-level computational fluid dynamics codes in delivering sufficient accuracy in
numerical flow simulations, as well as in resolving a wide range of turbulence scales for reliable large eddy simulations have
been widely realized over the past decade. Since these codes are typically based on low-order finite-volume methods, high-
order methods such as discontinuous Galerkin (DG) methods have been advocated as alternative discretization techniques.
DG methods are weighted residual methods with discontinuous approximate solution spaces typically consisting of polyno-
mials of degree p defined on each element of the geometry triangulation. The inter-element connectivities are enforced
through a proper definition of numerical fluxes along the shared boundaries between elements. High-order DG methods
have advantages over continuous Galerkin methods in capturing features of convection-dominated flows, facilitating
hp-adaptivity, ease of parallelization, and in the effectiveness of block-diagonal iterative solvers. For these advantages to
be realized in industrial simulations, efficient solution strategies should be developed for systems arising from high-order
DG discretizations. The importance of having efficient solution algorithms for DG methods is further appreciated when real-
izing that for a fixed mesh and a fixed approximation order (low to moderately high-orders), the DG discretization yields
larger number of degrees of freedom compared to the continuous formulation.
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In this work, we consider the solution of the steady compressible Navier–Stokes equations using multigrid algorithms on
unstructured (possibly anisotropic) meshes. Multigrid methods have been proved to be highly efficient in iteratively solving
the system arising from implicit treatment of a wide range of physical problems including elliptic and hyperbolic equations
[10,17,18,24].

For low-order discretizations (e.g. low-order finite-volume or element method), multigrid algorithms have been tradi-
tionally involved constructing a sequence of increasingly coarser meshes, and then using a fixed discretization technique
on these coarser grids to form coarse level approximations (h-multigrid). One approach to obtain coarser meshes is the
so-called agglomeration process involving merging together neighboring elements to obtain coarser grids. First-order accu-
rate (p = 0) agglomeration multigrid methods for unstructured meshes are well established and deliver near optimal conver-
gence rates (h-independence convergence) [8,9].

On the other hand, for high-order finite element methods, a natural choice for constructing coarse level approximations is
to hold the computational mesh fixed and discretize the equations using a lower approximation order within each element
(p-multigrid). This approach has been advocated and used in the context of spectral element methods for the last few dec-
ades [23,22]. More recently, two-level and p-multigrid algorithms have been studied for DG methods [29,16,13]. Persson and
Peraire developed a two-grid preconditioner for the Newton–GMRES solution of the system arising from the high-order DG
discretization of the compressible Navier–Stokes equations [29]. They considered the block Jacobi, block Gauss–Seidel and
block ILU smoothers. The coarse level was either the p ¼ 0 approximation or the p ¼ 1, which was solved exactly using a
direct solver. They concluded that the ILU preconditioner performs better than other preconditioners studied. Fidkowski
et al. developed a p-multigrid algorithm for the high-order DG discretization of the compressible Navier–Stokes equations
[13]. Their algorithm employed an element line Jacobi smoother in which lines of elements are formed using coupling based
on the p ¼ 0 discretization of the scalar convection–diffusion equation. They used a V-cycle multigrid with the coarsest level
formed with the p ¼ 0 approximation, and solved using a large number of smoothing iterations. Using the element line Jacobi
smoother, they reported order-independent (p-independent) convergence rates, up to p ¼ 3. However, they observed some
h-dependence; that is, the convergence rate degrades as the mesh size grows.

The performance of the p-multigrid (and two-grid) solvers may degrade if the coarsest level problem is not solved effi-
ciently. For solving the coarsest problem, although either a direct solver or a large number of smoothing iterations can be
employed (as was employed in [29,13], respectively), they both yield poor asymptotic scaling with the mesh size. One rem-
edy to this problem is to increase the total number of coarse levels through coupling both p- and h-multigrid (ph-multigrid)
to more efficiently damp the large wave length error modes. This strategy was indeed used by Nastase and Mavriplis for the
solution of Euler equations in two and three dimensions on unstructured triangular meshes [20,21] demonstrating p-inde-
pendent and nearly h-independent convergence rates.

We herein extend the idea of coupling p- and h-multigrid algorithms to the high-order DG solution of the compressible
Navier–Stokes equations using triangular meshes. One of the distinctive features of this work, compared to [20], is the inves-
tigation of two different cycling strategies for the ph-multigrid solution of the Navier–Stokes equations. Specifically, we show
that unlike for the Euler equations, having the p ¼ 0 approximation for the coarsest level does not yield optimal convergence
for the Navier–Stokes equations, and we require the use of the p ¼ 1 approximation as the coarsest level problem. We sug-
gest solving the p ¼ 1 problem itself using several cycles of a V-cycle ph-multigrid scheme. We also investigate the use of the
ph-multigrid algorithm as a preconditioner within the context of a Newton–GMRES solver.

The remainder of the paper is organized as follows. In the next section, we introduce the steady compressible Navier–
Stokes equations, before describing the DG discretization in Section 3. We then present the single-grid solver and the
proposed multigrid algorithms and the preconditioned Newton–GMRES solver in Sections 4–6, respectively. In the final
two sections, we present the numerical results and conclude the work.

2. Compressible Navier–Stokes equations

The steady compressible Navier–Stokes equations are written in vector form as
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where X is a bounded domain in d space dimensions with d ¼ 2 or 3. The conservative state vectors are
u � ½u1; . . . ;udþ2�T ¼ ½q;qv1; . . . ;qvd;qE�T with q;v ¼ ½v1; . . . ;vd� and E representing the density, velocity vector and total en-
ergy, respectively.

The convective and viscous fluxes are, respectively, defined as
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