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a b s t r a c t

The interaction between a fluid and a poroelastic structure is a complex problem that cou-
ples the Navier–Stokes equations with the Biot system. The finite element approximation
of this problem is involved due to the fact that both subproblems are indefinite. In this
work, we first design residual-based stabilization techniques for the Biot system, moti-
vated by the variational multiscale approach. Then, we state the monolithic Navier–
Stokes/Biot system with the appropriate transmission conditions at the interface. For the
solution of the coupled system, we adopt both monolithic solvers and heterogeneous
domain decomposition strategies. Different domain decomposition methods are consid-
ered and their convergence is analyzed for a simplified problem. We compare the efficiency
of all the methods on a test problem that exhibits a large added-mass effect, as it happens
in hemodynamics applications.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The interaction between a free fluid and a deformable porous medium is found in a wide range of applications: ground-
surface water flow, geomechanics, reservoir engineering, filters design, seabed–wave or blood-vessel interactions. Let us
focus on the latest application. From the arterial lumen (where blood flows), the blood enters the artery walls. Hence, in
simulating the blood–artery interaction neglecting the porosity of the artery wall means to disregard an important feature. Mod-
eling the fluid–poroelastic interaction in an accurate and efficient way represents a step forward towards the numerical sim-
ulations of complex clinical problems. For instance, it permits to simulate how low-density lipoproteins (LDL) or drugs are
filtrated into the tissue.
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The classical fluid–structure interaction problem that appears in hemodynamics (Navier–Stokes coupled to the elasticity
for thin structures) has been broadly studied (see, e.g., [61,20] and references therein). Many works have been devoted also
to the Navier–Stokes/Darcy coupling (see, e.g., [58,59,3] and references therein) to simulate mass transport from the arterial
lumen to the arterial walls and inside the walls, when the latter are supposed to be undeformable. The fluid–poroelastic
structure interaction (FPSI) problem couples the Navier–Stokes equations for an incompressible fluid to the Biot problem,
the latter governing the motion of a saturated poroelastic medium. FPSI has received much less attention. For hemodynamics
applications, the most salient work is [49], where the Biot system is stated in terms of the structural velocity us (or displace-
ment), filtration flux q, and pressure pp. The coupled system is linearized by Newton’s method and solved by a monolithic
solver. A simplified FPSI system appearing in hemodynamics has also been considered in [19]. Therein, the Biot system is
written in terms of ðus; ppÞ only, after neglecting the inertia terms in Darcy’s law. The fact that q does not appear in the for-
mulation requires to introduce artificial boundary conditions on the interface between the lumen and the poroelastic vessel
medium.

Even though it is common practice to write the Darcy problem as a pressure Poisson equation, we will not adopt this ap-
proach here for several reasons. The original Darcy’s law is a transient problem (see [29]), and inertia terms must be ne-
glected in order to obtain the pressure Poisson problem. Much more critical is the fact that the Poisson problem fails to
approximate non-smooth pressures in areas with jumps of physical parameters (e.g., hydraulic conductivity or porosity).
The local pressure instabilities appearing in these areas are well-known in soil consolidation computations and motivated
mixed formulations in [71]. However, the main reason why the Darcy’s system has to be stated in mixed form is that we
want to couple this problem with the Navier–Stokes equations via proper transmission conditions. The fact that q appears
explicitly in the formulation is of great importance, because it allows to enforce the proper boundary conditions at the fluid–
porous structure interface (see Section 4.1).

The numerical approximation of FPSI problems is challenging due to the three inf–sup conditions that need to be fulfilled
in order for the coupled problem to be well-posed: the inf–sup condition for the fluid sub-problem and the inf–sup condi-
tions for both incompressible elasticity and Darcy’s problem for the poroelastic subproblem. While there exists a great vari-
ety of stabilization techniques for the incompressible Navier–Stokes equations (e.g., [17,65]), very few works deal with the
stabilization of the Biot system in mixed form (no pressure Poisson equation is used). For instance, the Biot system in terms
of ðus;q; ppÞ has been approximated using a characteristic-based splitting algorithm in [71] and using penalty terms in [21].
In this work, we introduce a residual-based stabilization technique motivated by the variational multiscale method (VMS).
This technique, introduced in [43], allows to use finite element spaces that do not satisfy the inf–sup conditions at the dis-
crete level. In fact, the associated algebraic system is quite involved, and the use of the same finite element spaces for all the
velocities and pressures greatly simplifies the discretization and the enforcement of transmission conditions. We will con-
sider linear Lagrangian elements for all the unknowns in the numerical experiments.

We extend to FPSI problems some of the strategies adopted for fluid–elastic structure interactions. Unlike [49,19], we
choose a fixed point method for the linearization of the Navier–Stokes/Biot coupled system. In this way, it is easy to consider
the semi-implicit versions of all the algorithms, i.e. only one fixed point iteration is performed per time step. Semi-implicit
methods enable us to better understand the Navier–Stokes/Biot coupling since nonlinearities are explicitly treated. To solve
the linear FPSI system, we propose to extend both the monolithic approach introduced in [7] and partitioned procedures
based on domain decomposition preconditioners. At the best of our knowledge, it is the first time that a modular approach
is adopted for FPSI problems. A fluid–structure algorithm is said to be modular when it only requires interface data transfer
between the two codes, without any modification of the sources. A modular algorithm allows to reuse existing (and already
optimized) fluid and structure codes. Among all the partitioned procedures, we focus our attention on the Dirichlet–Neu-
mann, Robin–Neumann, and Robin–Robin algorithms (see, e.g., [66]).

In summary, the main novelty of this work consists in: the development of a residual-based stabilized finite element
method for the Biot system; the use of a semi-implicit monolithic method for the Navier–Stokes/Biot system; the extension
of domain decomposition techniques to the FPSI problem and the comparison with non-modular solvers.

In Section 2 we state the Navier–Stokes/Biot coupled problem in its differential form, specifying the coupling conditions
which lead to a mathematically well-posed problem. The variational formulation of the coupled problem is tackled in Section
3. In Section 4 we develop a ðus;q; ppÞ residual-based stabilized formulation of the Biot system. The matrix form of the Na-
vier–Stokes/Biot system associated to the fully discretized and linearized problem is described in Section 5. Sections 6 and 7
present our monolithic approach and the partitioned procedures we apply to solve the linear system. Finally, in Section 8, we
carry out some numerical experiments on simplified 2d problems representing blood-vessel systems.

2. Problem setting

Suppose that a bounded, polyhedral, and deformable domain Xt � Rd (d ¼ 2;3, being the space dimension, and t 2 ½0; T�
the time) is made up of two regions, Xf

t and Xp
t , separated by a common interface Rt ¼ @Xf

t \ @X
p
t . The first region Xf

t is
occupied by an incompressible and Newtonian fluid, and the second one Xp

t is occupied by a fully-saturated poroelastic
matrix. Both domains depend on time. Here, we denote by n the unit normal vector on the boundary @Xf

t , directed
outwards into Xp

t , and by t the unit tangential vector orthogonal to n. We assume the boundary @Xt (and so n and t)
to be regular enough.
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