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Abstract

We present an efficient numerical algorithm for simulating chemical kinetic systems with multiple time scales. This algo-
rithm is an improvement of the traditional stochastic simulation algorithm (SSA), also known as Gillespie’s algorithm. It is
in the form of a nested SSA and uses an outer SSA to simulate the slow reactions with rates computed from realizations of
inner SSAs that simulate the fast reactions. The algorithm itself is quite general and seamless, and it amounts to a small
modification of the original SSA. Our analysis of such multi-scale chemical kinetic systems allows us to identify the slow
variables in the system, derive effective dynamics on the slow time scale, and provide error estimates for the nested SSA.
Efficiency of the nested SSA is discussed using these error estimates, and illustrated through several numerical examples.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The stochastic simulation algorithm (SSA in short), also known as the Gillespie algorithm and originally
introduced in the context of chemical kinetic systems, has found a wide range of applications in many different
fields, including computational biology, chemistry, combustion, and communication networks [20,10,11].
Besides being an effective numerical algorithm, SSA is also a model for chemical kinetic systems that takes into
account the discreteness and finiteness of the molecular numbers as well as stochastic effects. This feature makes
it an attractive alternative to the approach of using systems of deterministic ODEs, particularly in situations
when the stochastic effects are important [9]. In addition, since SSA uses less modeling assumptions and is there-
fore closer to the first principle models, it is often easier to determine the parameters in the model. In fact, the
main modeling parameters are the rate functions which can in principle be computed using the rate theories [21].
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The disadvantage of SSA is that it is computationally more expensive to handle than the systems of ODE:s.
Besides being stochastic in nature, the system often involves many disparate time scales. This is easy to appre-
ciate, since chemical reaction rates often depend exponentially on the activation energy. For a deterministic
system of ODEs, this results in the stiffness of the ODEs, for which many efficient numerical methods have
been developed [12]. However, the situation for SSA is much less satisfactory.

In recent years, this issue has received a great deal of attention and some important progress has been
made. The main idea, pursued in different forms by many people, is to model the effective dynamics on the
slow time scale, by assuming that the fast processes are in quasi-equilibrium [13,25,22,3,4]. In [13], a multi-
scale simulation method was proposed in which the slow and fast reactions are simulated differently. The slow
reactions are simulated using Gillespie algorithm and the fast reactions are simulated using Langevin dynam-
ics. In [25], a similar multi-scale scheme is proposed in which the fast dynamics is simulated using deterministic
ODEs. Both the approaches in [13,25] require that the volume of the system be sufficiently large in addition to
having well-separated rates. [22] proposes a scheme based on the quasi-equilibrium assumption by assuming
that the probability densities of the fast species conditioned on the slow species is known exactly or can be
approximated, e.g. by normal distributions. The same quasi-equilibrium assumption is used in [3,4], except
that the probability density of the fast species conditioned on the slow species is computed via a modified pro-
cess called the virtual fast process.

The method proposed in [3,4] is more general than previous methods, but it still has limitations. It assumes
the equilibrium distributions of the fast processes can be approximated by simple functions and the fast species
are independent of each other at equilibrium. Moreover, the rate functions of the slow processes are also
assumed to be of special forms and are approximated empirically by solving a system of algebraic equations.
These limitations are removed in the recent work, [7], in which a nested SSA is proposed to deal with the time
scale issue. This work relies only on the disparity of the rates, and makes no a priori assumption on what the
slow and fast variables are, or the analytic form of the rate functions. The recent work in [23] is much closer to
our work in spirit. It also adopted a nested structure with inner loop on the fast reactions and the outer loop
on the slow reactions. However, the outer loop algorithm is significantly different from ours, without faithfully
capturing the effective dynamics on the slow time scale. In particular, they also resort to a partition into slow
and fast species, a partition that is avoided in our work.

It is worthwhile to emphasize that, as we will see in Section 3, the algorithm proposed in [7] is quite general
and seamless. In particular, it makes no explicit mentioning of the fast and slow variables. At a first sight, this
might seem surprising, since there are counterexamples showing that algorithms of the same spirit do not work
for deterministic ODEs with separated time scales [8] if the slow variables are not explicitly identified and
made use of. But in the present context, the slow variables are linear functions of the original variables, as
a consequence of the fact that the state change vectors {v;}s are constant vectors, and this is the reason
why the seamless algorithm works.

However, unlike the original SSA which is exact, the nested SSA is approximate and to understand the
errors in the nested SSA, it is important to understand what the slow and fast variables are and what the effec-
tive process is on the slow time scale. These issues were dealt with briefly in [7], and one main purpose of the
present paper is to study them in more detail. This will allow us to estimate the optimal numerical parameters
and the overall cost of the algorithm. In addition, we will discuss various extensions of the nested SSA, as well
as important implementation issues such as adaptively determining slow and fast processes.

The paper is organized as follows. In Section 2, we define the slow variables and derive the effective dynam-
ics on the slow time scale for chemical kinetic systems with two disparate time scales. Section 3 introduces the
nested SSA for the special case when the system has two disparate time scales. Error estimates for the nested
SSA are proved and illustrated through numerical examples. We also elaborate on why the nested SSA algo-
rithm is seamless, and when a similar seamless algorithm can be developed in the context of ordinary differ-
ential equation such as, for instance, the ones that arises from the chemical kinetic system in the large volume
limit. Then in Section 4, we show how to adaptively determine the partition of the system into slow and fast
reactions during the simulation. Finally, in Section 5, we discuss the effective dynamics and nested SSA for
system with multiple (more than two) well-separated time scales. In this case, both the averaging principle
and the nested SSA can be applied iteratively, similar to the case in iterated homogenization [1]. We also study
the system over the diffusive time scale.
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