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Abstract

A scheme using the mesh-free generalized finite differencing (GFD) on flows past moving bodies is proposed. The aim is
to devise a method to simulate flow past an immersed moving body that avoids the intensive remeshing of the computa-
tional domain and minimizes data interpolation associated with the established computational fluid methodologies; as such
procedures are time consuming and are a significant source of error in flow simulation. In the present scheme, the moving
body is embedded and enveloped by a cloud of mesh-free nodes, which convects with the motion of the body against a
background of Cartesian nodes. The generalized finite-difference (GFD) method with weighted least squares (WLS)
approximation is used to discretize the two-dimensional viscous incompressible Navier–Stokes equations at the mesh-free
nodes, while standard finite-difference approximations are applied elsewhere. The convecting motion of the mesh-free
nodes is treated by the Arbitrary Lagrangian–Eulerian (ALE) formulation of the flow equations, which are solved by a
second-order Crank–Nicolson based projection method. The proposed numerical scheme was tested on a number of prob-
lems including the decaying-vortex flow, external flows past moving bodies and body-driven flows in enclosures.
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1. Introduction

Computational fluid dynamics (CFD) is traditionally practised using mesh-based methods like the finite
element (FE), finite volume (FV) and finite difference (FD), and they are widely accepted as the mainstream
solution tools. While the mesh structure allows the FE and FV methods to handle complex geometries
effectively, the same structure becomes a limitation when one has to alter the meshing to accommodate a
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continuously changing computational domain. Problems of this nature are becoming common today, particu-
larly with the growing preoccupation of engineers with biologically motivated problems, where large boundary
motions are frequently encountered. Besides appearing cumbersome and inelegant, extensive remeshing and
data interpolation in these methods can add to computational costs and solution inaccuracies. The traditional
finite-difference method is highly effective when coordinate transformations are available to simplify the com-
putational geometries. Unlike FE and FV methods, however, the transformation approach cannot be extended
to complex geometries.

In recent decades, a new class of what is termed mesh-free or meshless numerical methods has flourished.
This is due in part to their ability to alleviate some of the shortcomings of the conventional procedures. As
opposed to mesh-based methods, they do not require pre-specified connectivity between the computational
nodes or grid points. There is no need to identify the element or volume edges and surfaces. These methods
are thus better able to represent irregular boundaries and negotiate complex spaces with ease and flexibility.
Mesh-free methods are known to originate from the works of astrophysicists. The smooth particle hydrody-
namics (SPH) method [1] is used to simulate astrophysical phenomena such as exploding stars and dust clouds.
This method belongs to the class of particle methods [2] which adopts kernel approximations to obtain the
Lagrangian flow field. Belytschko et al. [3] provided a detailed description of the broad spectrum of mesh-free
methods that have been developed, including the diffuse element method (DEM) [4], the element-free Galerkin
method (EFG) [5], the reproducing-kernel particle method (RKPM) [6], the partition of unity method (PUM,
or PUFEM) [7], hp clouds [8], finite point method (FPM) [9–11] and the generalized finite-difference method
(GFD) [12–15]. These methods have been applied to various problems in solid and fluid mechanics.

Particle methods like SPH and the vortex particle method are Lagrangian in nature and avoid grid-based
numerical dissipation, which causes the flow to be more viscous. However, these ‘particles’ require good dis-
tribution and redistribution, and their Lagrangian nature makes this difficult in flows with extensive boundary
motions. DEM and EFG belong to the type of mesh-free methods that are integral by nature. In this sense,
they are not strictly ‘free from mesh’, and may suffer from the same deficiencies as the FE methods in moving
body problems. The truly mesh-free methods are the non-integral types in hp clouds, FPM and GFD. These
methods adopt mesh-free computational nodes that may not necessarily be Lagrangian in nature, and such
nodes may be more suited for handling flows with moving boundaries.

As mentioned earlier, there has been growing interest in the modeling of moving boundary problems, which
is aided not least by the continuous increase in computing power and corresponding reduction in the cost of
computation. In this paper, we shall concern ourselves with the development of a hybrid mesh-free computa-
tional scheme for the simulation of flows past and flows driven by moving solid bodies. We believe the advan-
tages of mesh-free methods can be harnessed to solve this class of problem. Before we proceed with the details
of the new scheme, we shall first present a broad overview of the various methods that have been devised over
the years to deal with the simulation of moving boundary/body problems.

Methods for solving moving boundary or interface problems fall under two main categories: those that
employ boundary-fitted grids (also termed body-conformal grids) and those that employ non-boundary-fitted
grids. A method is boundary-fitted when the boundaries or interfaces coincide with the computational nodes
or grid points. The nodes/grid points then clearly demarcate the interface, and morph and move with the inter-
face during motion. Boundary conditions are applied directly on the interface, and the motion of the interface
is explicitly tracked. The two common boundary-fitted methods are composite grids [16,17], which are
normally applied with finite differencing, and FV or FE schemes, which are frequently implemented with
the arbitrary Lagrangian–Eulerian (ALE) formulation [18].

Composite grids with generalized coordinates and transformed governing equations are commonly used to
embed solid objects within flows. A separate set of coordinate frame and grid points (the sub-mesh) are gen-
erated for each embedded object. Local sub-meshing is usually performed using an orthogonal or algebraic
grid generator. Communication between the main and the local meshes is usually done through extensive
interpolation of data between the meshes, typically at the outer boundaries of the mesh systems. Apart from
interpolation, the sub-meshes are also restricted in their geometric complexity due to the use of generalized
coordinates. The second boundary-fitted method involves the use of unstructured grids with FE or FV meth-
odologies to solve for the flow in arbitrary Lagrangian–Eulerian (ALE) formulation [19,20]. This is an elegant
approach in which the solution is derived based on a mixed treatment of grid points in either the Lagrangian
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