

Contents lists available at ScienceDirect

Tetrahedron

Nagelamides M and N, new bromopyrrole alkaloids from sponge Agelas species

Takaaki Kubota ^a, Atsushi Araki ^a, Junji Ito ^b, Yuzuru Mikami ^b, Jane Fromont ^c, Jun'ichi Kobayashi ^{a,*}

- ^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- ^b Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan
- ^c Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia

ARTICLE INFO

Article history:
Received 11 August 2008
Received in revised form
15 September 2008
Accepted 15 September 2008
Available online 24 September 2008

ABSTRACT

Two new bromopyrrole alkaloids, nagelamides M (1) and N (2), have been isolated from an Okinawan marine sponge *Agelas* species, and the structures and stereochemistry were elucidated from the spectroscopic data. Nagelamide M (1) is a novel bromopyrrole alkaloid possessing a 2-amino-octahydropyrrolo[2,3-d]imidazole ring with a taurine unit, while nagelamide N (2) is a new bromopyrrole alkaloid possessing a 2-amino-tetrahydroimidazole-4-one ring with a taurine unit and 3-(dibromopyrrole-2-carboxamido)propanoic acid moiety. Nagelamides M (1) and N (2) exhibited antimicrobial activity.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Bromopyrrole alkaloids are known to be one of the most common metabolites contained in marine sponges.¹ During our search for bioactive substances from marine organisms, we previously isolated several bromopyrrole alkaloids with unique cyclic skeletons from sponges of *Agelas* or *Hymeniacidon* sp.² More recently, two new bromopyrrole alkaloids, nagelamides M (1) and N (2), have been isolated from an Okinawan marine sponge *Agelas* sp. (SS-1134). Here we describe the isolation and structure elucidation of 1 and 2.

2. Results and discussion

The sponge *Agelas* sp. (SS-1134) collected off Seragaki beach, Okinawa, was extracted with MeOH. BuOH-soluble materials of the extract were subjected to silica gel and C_{18} column chromatographies followed by C_{18} HPLC to yield nagelamides M (1, 0.00069%, wet weight) and N (2, 0.0016%) together with known related alkaloids, tauroacidin A, 3 taurodispacamide A, 4 and nagelamides C^5 and K. 2

The ESIMS spectrum of nagelamide M (1) showed the pseudomolecular ion peaks at m/z 527, 529, and 531 (1:2:1), indicating the presence of two bromine atoms, and the molecular formula of 1 was revealed to be $C_{13}H_{18}N_6O_5Br_2S_1$ by HRESIMS data [m/z 526.9340 (M–H) $^-$, Δ –0.8 mmu]. The UV absorption [λ_{max} 275 nm (ε 18,000)] was attributed to a pyrrole chromophore, 6 while the IR absorption (1684 cm $^{-1}$) indicated the existence of amide carbonyl functionality.

The ^1H NMR (Table 1) spectrum included five D₂O-exchangeable signals (δ_{H} 12.65, 9.02, 8.64, 8.30, and 7.95) attributed to amino and/or amide protons. The ^{13}C NMR (Table 1) spectrum disclosed 13 signals due to one amide carbonyl carbon, four sp² quaternary carbons, one sp² methine, one sp³ quaternary carbon, two sp³ methine, and four sp³ methylenes. Among the ^{13}C signals of **1**, one amide carbonyl (159.10), three sp² quaternary carbons (127.98, 104.41, and 97.91), and one sp² methine (δ_{C} 113.29) were ascribed to a 2,3-dibromopyrrole carbonyl moiety (N-1–C-6) by comparison with those of known bromopyrrole alkaloids,² while one sp³ quaternary carbon (δ_{C} 94.36) and one sp³ methine (δ_{C} 81.26) were assigned as those bearing two hetero atoms such as oxygen and nitrogen atoms.

Detailed analyses of the ¹H–¹H COSY and HMQC spectra disclosed three structural fragments, N-7 to C-10, C-2′ to C-3′, and N-14 to C-15. The presence of a 2,3-dibromopyrrole moiety was suggested by HMBC cross-peaks of NH-1 to C-3 and C-4, and H-4 to C-2 and C-5 (Fig. 1). The NOESY correlation for NH-7/H-4 indicated that the 2,3-dibromopyrrole moiety was attached to N-7 through an amide bond. The presence of a 2-amino-octahydropyrrolo[2,3-d]imidazole ring was deduced from analysis of the HMBC spectrum of 1. Connections among C-10, N-12, and C-15 via C-11 were implied by HMBC cross-peaks for H₂-10 and H-15 to C-11, and NH-12 to C-15. HMBC correlations for NH-12, NH-14, and H-15 to C-13, and

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

Table 1 1 H and 13 C NMR data of nagelamide M (1) in DMSO- d_{6}

Position	δ_{H}		δ_{C}
1	12.65	brs	_
2 3	_		104.41
	_		97.91
4 5 6	7.02	brs	113.29
5	_		127.98
6	_		159.10
7	8.30	brdd 7.7, 4.2	_
8a	3.67	m	37.40
8b	3.18	m	_
9	2.94	m	59.50
10a	2.11	dd 12.1, 4.7	40.67
10b	1.77	brt 11.5	
11	_		94.36
12	9.02	brs	_
13	_		157.54
13-NH ₂	7.95 (2H)	brs	_
14	8.64	brs	_
15	4.93	brs	81.26
2′a	3.16	m	48.34
2′b	2.86	m	_
3'a	2.82	m	40.78
3′b	2.72	m	

NH-12 to C-15 indicated the connection of N-12 and N-14 via C-13. The connectivity of C-9 and C-15 through N-1′ was implied by the HMBC cross-peak of H-15 to C-9, while HMBC correlations for NH-14 to C-11 indicated the connection of C-11 and N-14 via C-15. In addition, NOESY correlations for H₂-8/H-2′ and H-15/H₂-2′ suggested that a taurine unit was attached to N-1′. Thus, the gross structure of nagelamide M was elucidated to be **1**.

Relative stereochemistry of the bicyclic system in **1** was deduced from *J*-values and NOESY correlations as shown in Figure 2. The NOESY correlation for H-10b/H-15 indicated that H-10b and H-15 was α -oriented, while NOESY cross-peaks of H-9/H-10a, and H-10a/NH-12 suggested that these hydrogen atoms were β -oriented. The cis ring junction of the bicyclic ring system and an α -orientation of 11-OH were implied by data described above.

The ESIMS spectrum of nagelamide N (**2**) showed the pseudomolecular ion peaks at m/z 557, 559, and 561 (1:2:1), suggesting the presence of two bromine atoms. The molecular formula of **2** was revealed to be $C_{13}H_{15}N_6O_7Br_2S_1$ from HRESIMS data [m/z 556.9105 (M–H)⁻, Δ +1.5 mmu]. The UV absorption [λ_{max} 275 nm (ϵ 10,000)] indicated the presence of pyrrole chromophore, while IR absorptions (3388, 1700, and 1678 cm⁻¹) suggested the existence of hydroxyl and carbonyl functionalities.

The 1 H NMR (Table 2) spectrum included six D_2O -exchangeable signals (δ_H 12.75, 9.84, 9.15, 9.07, 8.31, and 7.92) attributed to amino and/or amide protons. The ^{13}C NMR (Table 2) spectrum disclosed 13 signals due to seven sp 2 quaternary carbons, one sp 2 methine, one sp 3 methine, one sp 3 quaternary carbon, and three sp 3 methylenes.

Inspection of the ¹H-¹H COSY and HMQC spectra of **2** revealed two structural fragments, N-7 to C-9 and N-1′ to C-3′. The presence

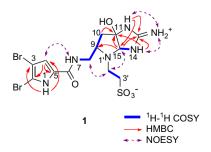


Figure 1. Selected 2D NMR correlations for nagelamide M (1).

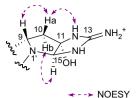


Figure 2. Selected NOESY correlations and relative stereochemistry for the bicyclic core in nagelamide M (1).

of 2,3-dibromopyrrole moiety was suggested by HMBC cross-peaks of NH-1 to C-3 and C-4, and H-4 to C-2 and C-5. The ROESY correlation for NH-7/H-4 indicated that the 2,3-dibromopyrrole moiety was attached to NH-7 through an amide bond. The HMBC correlation for H-9 to C-10 indicated that a carboxy group was attached to C-9. The presence of an aminoimidazole ring was deduced from HMBC correlations for NH-12 to C-11, C-13, and NH-12 and NH-14 to C-15, and ROESY cross-peaks for 13-NH₂/NH-12 and NH-14. The HMBC correlation for H-9 to C-11 and the ROESY cross-peak of NH-1'/H-9 revealed that both C-9 and NH-1' were attached to C-11. Thus, the gross structure of nagelamide N was assigned as **2** (Fig. 3).

The relative stereochemistry of **2** was deduced from ROESY data. The relative stereochemistry for C-9 and C-11 in **2** was elucidated by ROESY correlations of NH-1'/H-8a and H-9, and NH-12/H-8b as shown in Figure 4.

A plausible biogenetic path for nagelamides M (1) and N (2) is proposed as shown in Scheme 1. Nagelamide M (1) could be produced by oxidation of intermediate **A**, which might be derived from taurodispacamide A⁴ through cyclization, while nagelamide N (2) could be generated from hydrolysis and oxidation of intermediate **B**, which might be derived from taurodispacamide A through Baeyer–Villiger oxidation and cyclization.

Nagelamide M (1) is a novel bromopyrrole alkaloid possessing a 2-amino-octahydropyrrolo[2,3-d]imidazole ring with a taurine unit, while nagelamide N (2) is a new bromopyrrole alkaloid consisting of a 2-amino-tetrahydroimidazole-4-one ring with a taurine unit and 3-(dibromopyrrole-2-carboxamido)propanoic acid moiety. Nagelamides M (1) and N (2) showed inhibitory activity against *Aspergillus niger* (MIC, 33.3 μ g/mL, each).

Table 2 1 H and 13 C NMR data of nagelamide N (**2**) in DMSO- d_{6}

Position	δ_{H}		δ_{C}
1	12.75	brs	_
2	_		105.07
3	_		98.05
4	6.89	S	113.12
5	_		127.91
6	_		159.09
7	8.31	brt	_
8a	3.02	m	36.57
8b	3.29	m	_
9	3.12	dd 12.2, 4.0	51.91
10	_		172.13
11	_		90.40
12	9.07	brs	_
13	_		167.55
13-NH ₂	7.92 (2H)	brs	_
14	9.15	brs	_
15	_	brs	178.60
1'	9.84	brt	_
2'a	3.58		40.24
2′b	3.68	s	_
3'	3.82 (2H)	t 7.6	49.17

Download English Version:

https://daneshyari.com/en/article/5227303

Download Persian Version:

https://daneshyari.com/article/5227303

<u>Daneshyari.com</u>