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a b s t r a c t

We develop a sixth order finite difference discretization strategy to solve the two dimen-
sional Poisson equation, which is based on the fourth order compact discretization, multi-
grid method, Richardson extrapolation technique, and an operator based interpolation
scheme. We use multigrid V-Cycle procedure to build our multiscale multigrid algorithm,
which is similar to the full multigrid method (FMG). The multigrid computation yields
fourth order accurate solution on both the fine grid and the coarse grid. A sixth order accu-
rate coarse grid solution is computed by using the Richardson extrapolation technique.
Then we apply our operator based interpolation scheme to compute sixth order accurate
solution on the fine grid. Numerical experiments are conducted to show the solution accu-
racy and the computational efficiency of our new method, compared to Sun–Zhang’s sixth
order Richardson extrapolation compact (REC) discretization strategy using Alternating
Direction Implicit (ADI) method and the standard fourth order compact difference (FOC)
scheme using a multigrid method.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Poisson equation is a partial differential equation (PDE) with broad applications in mechanical engineering, theoretical
physics and other fields. The two dimensional (2D) Poisson equation can be written in the form of

uxxðx; yÞ þ uyyðx; yÞ ¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ

where X is a rectangular domain, or a union of rectangular domains, with suitable boundary conditions defined on oX. The
solution uðx; yÞ and the forcing function f ðx; yÞ are assumed to be sufficiently smooth and have the necessary continuous par-
tial derivatives up to certain orders.

A second order accurate solution can be computed by applying the standard second order central difference operators to
uxxðx; yÞ and uyyðx; yÞ in Eq. (1). Higher order (more than two) accurate discretization methods need more complex procedure
than the second order accurate discretization method to compute the coefficient matrix, but they usually generate linear
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systems of much smaller size, compared with that from the lower order accurate discretization methods [1,7,10]. There has
been growing interest in developing higher order accurate discretization methods, especially the high order compact differ-
ence schemes, to solve partial differential equations (PDEs) [11,15,18,23,25,26]. We call them ‘‘compact” because these
schemes only use the minimum three grid points in one dimension in the discretization formulas.

Previously, Chu and Fan [5,6] proposed a three point combined compact difference (CCD) scheme for solving two dimen-
sional Stommel Ocean model, which is a special two dimensional convection–diffusion equation. They used Hermitian poly-
nomial approximation to achieve sixth order accuracy for the inner grid points and fifth order accuracy for the boundary grid
points. The advantage of the CCD scheme is that it can be used to solve many types of PDEs without major modifications. And
the Alternating Direction Implicit (ADI) [14] method can be used to reduce the higher dimensional problems to a series of
lower dimensional problems. So, their scheme is referred to as the implicit high order compact scheme because they do not
compute the solution of the dependent variables of the PDEs directly. Instead, the first derivative and the second derivative
of the dependent variables are computed at the same time.

In contrary, the explicit fourth order compact schemes [9,10,12,13,18] compute the solution of the variables directly, no
redundant computation is needed. Some accelerating iterative methods like multigrid method and preconditioned iterative
method have been used to efficiently solve the resulting sparse linear systems arising from the high order compact finite
difference discretizations [22,24,25]. But the higher order explicit compact schemes are more complicated to develop in
higher dimensions [8,27], compared with the implicit compact schemes. As far as we know, there is no existing explicit com-
pact scheme on a single scale grid that is higher than the fourth order accuracy.

Since a sixth order explicit compact scheme may be impossible to develop on a single scale grid, the multiscale grid meth-
od has been considered to achieve the sixth order accuracy for the explicit compact formulations. Sun and Zhang [20] first
proposed a sixth order explicit finite difference discretization strategy for solving the 2D convection–diffusion equation.
They used ADI method to compute the fourth order accurate solution on the fine and the coarse grids first, then apply
the Richardson extrapolation technique and an operator based interpolation scheme in each ADI iteration to achieve the
sixth order accurate solution on the fine grid. The major disadvantage of Sun–Zhang’s method is that the ADI iteration is
not scalable with respect to the meshsize. When the mesh becomes finer, the number of ADI iterations needed for conver-
gence increases quickly.

By using the idea of two scale grid computation from Sun–Zhang’s method, we intend to develop a new explicit sixth or-
der compact computing strategy for the 2D Poisson equation, which can efficiently solve the resulting linear system and is
scalable with respect to the problem size. We do not use the ADI method, instead, we develop a multigrid method that is
similar to the full multigrid method as our convergence acceleration method. With point Gauss–Seidel relaxation method
and line Gauss–Seidel relaxation method, we iteratively solve the resulting sparse linear system to get the fourth order accu-
rate solutions on both the fine and the coarse grids. Then we apply the Richardson extrapolation technique combined with
our new operator based interpolation scheme to compute the sixth order accurate solution on the fine grid.

In this paper, we present the sixth order compact difference discretization strategy for the 2D Poisson equation in Section
2. In Section 3, we develop our modified multigrid method to solve the fourth order accurate solution on the fine and the
coarse grids. Section 4 contains the numerical experiments to demonstrate the high accuracy of the sixth order compact dif-
ference scheme, as well as the computational efficiency of our modified multigrid method. Concluding remarks are given in
Section 5.

2. Sixth order compact approximations

Our explicit sixth order compact difference scheme is based on the fourth order compact discretization on the two scale
grids. In this section, we first introduce the fourth order compact difference scheme for the 2D Poisson equation. The basic
idea is from Zhang’s previous papers [20,25,28]. More detailed discussions about the fourth order compact difference
schemes can be found in [9,17].

In order to discretize Eq. (1), let us consider a rectangular domain X ¼ ½0; Lx� � ½0; Ly�. We discretize X with uniform mesh-
sizes Dx ¼ Lx=Nx and Dy ¼ Ly=Ny in the x and y coordinate directions, respectively. Here Nx and Ny are the number of uniform
intervals in the x and y coordinate directions. The mesh points are ðxi; yjÞ with xi ¼ iDx and yj ¼ jDy, 0 6 i 6 Nx, 0 6 j 6 Ny.

We write the standard second order central difference operators as

d2
x ui;j ¼

uiþ1;j � 2ui;j þ ui�1;j

Dx2 ; d2
y ui;j ¼

ui;jþ1 � 2ui;j þ ui;j�1

Dy2 :

Using Taylor series expansions, at the grid point ðxi; yjÞ, we have

d2
x ui;j ¼ uxx þ

Dx2

12
u4

x þ
Dx4

360
u6

x þ OðDx6Þ; ð2Þ

and

d2
y ui;j ¼ uyy þ

Dy2

12
u4

y þ
Dy4

360
u6

y þ OðDy6Þ: ð3Þ
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