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a b s t r a c t

Stability is one of the main concerns in the lattice Boltzmann method (LBM). The objectives
of this study are to investigate the linear stability of the lattice Boltzmann equation with
the Bhatnagar–Gross–Krook collision operator (LBGK) for the advection–diffusion equation
(ADE), and to understand the relationship between the stability of the LBGK and non-neg-
ativity of the equilibrium distribution functions (EDFs). This study conducted linear stabil-
ity analysis on the LBGK, whose stability depends on the lattice Peclet number, the Courant
number, the single relaxation time, and the flow direction. The von Neumann analysis was
applied to delineate the stability domains by systematically varying these parameters.
Moreover, the dimensionless EDFs were analyzed to identify the non-negative domains
of the dimensionless EDFs. As a result, this study obtained linear stability and non-negativ-
ity domains for three different lattices with linear and second-order EDFs. It was found that
the second-order EDFs have larger stability and non-negativity domains than the linear
EDFs and outperform linear EDFs in terms of stability and numerical dispersion. Further-
more, the non-negativity of the EDFs is a sufficient condition for linear stability and
becomes a necessary condition when the relaxation time is very close to 0.5. The stability
and non-negativity domains provide useful information to guide the selection of dimen-
sionless parameters to obtain stable LBM solutions. We use mass transport problems to
demonstrate the consistency between the theoretical findings and LBM solutions.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) is a mesoscopic numerical method that simulates macroscopic fluid dynamics based
on mesoscopic kinetic equations [1]. Developed as an improvement of the lattice gas automata (LGA) [2], the LBM has re-
ceived great attention not only in hydrodynamic problems, but also in mass transport problems, e.g. the reaction–diffusion
equation [3], the contaminant transport equation [4], and coupled density-dependent flow and heat/mass transfer problem
[5,6]. Most studies using the LBM have focused on the lattice Boltzmann equation with the Bhatnagar–Gross–Krook collision
operator [7] (LBGK), and this will be the focus of our study.

The numerical stability of the LBM still remains a challenge because it involves linear and non-linear stability. While the
linear stability analysis might be sufficient to analyze stability when hydrodynamic gradients are weak, it is not sufficient in
the general case where hydrodynamic gradients can lead to non-linear instabilities.

One of the earliest works that investigated the stability problem in the LBM was provided by Sterling and Chen [8], where
the LBGK was linearized for the fluctuating quantities of particle distribution functions with respect to the equilibrium
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distribution functions (EDFs). The von Neumann analysis was carried out to identify the most unstable directions and wave
numbers, and their relationship with the mean flow field, relaxation time, and mass distribution parameters. Worthing et al.
[9] extended the work of Sterling and Chen [8] to non-uniform flows. In particular, the case of a shear background flow was
studied and some stability boundaries were found.

In order to improve the stability of the LBM, several approaches have been introduced. The entropic LBM (ELBM) consid-
ers that the instability arises from violating the second law of thermodynamics. Therefore, inclusion of the H theorem in the
LBM was suggested to ensure positive production of entropy [10,11]. The equilibrium state in the ELBM is not explicitly
needed since the collision integral can be formulated based on knowledge of the H function [12]. To ensure the implemen-
tation of the H theorem, one must first find the kinetic state after collision that does not increase entropy during the collision
process, and this kinetic state fixes a limit for the new state after the collision. The ELBM provides unconditional stability
[13], but was computationally expensive because the isentropic state must be obtained by solving a non-linear equation
at each lattice and at every time step [14]. In Chikatamarla et al. [15], an analytical solution to the collision step was found,
improving the efficiency of the ELBM.

Comparisons between the LBGK and ELBM show that the ELBM is more stable and allows increasing the Reynolds number
[16]. Despite the increase of stability, the ELBM still suffers from spurious oscillations in regions with strong hydrodynamic
gradients, such as shock waves [17]. However, a great reduction of the spurious oscillations in the ELBM can be achieved by
selecting proper lattice velocities to retain complete Galilean invariance [18].

Improving stability can also be achieved by enforcing the non-negativity of particle distributions. Li et al. [19] introduced
a FIX-UP method, which consist of increasing the relaxation time in the LBGK to the minimum value that ensured non-neg-
ativity of all particle distribution functions after the collision. Tosi et al. [20] compared the stability behavior of the ELBM and
FIX-UP methods with the traditional LBGK, and both methods showed improved stability. While the computational cost is
double for the ELBM with respect to the FIX-UP method in one single time step, the ELBM allows increasing the Reynolds
number by about an order of magnitude, which makes the ELBM more suitable for high Reynolds number flows.

Brownlee et al. [21] introduced the idea of Enrenfests’ steps, in which artificial viscosity is added by returning the particle
distributions to their equilibrium states in those points where the variation of entropy between the kinetic state after the
collision and the equilibrium state is superior to some threshold. This idea evolved to the concept of the entropy limiters
[22], where the particles are smoothly relaxed to their equilibrium based on deviations of entropy from the equilibrium con-
sidering also the entropy deviation at the neighbor nodes.

The multi-relaxation times (MRT) method has also shown improvement on the stability of the LBM [23,24]. The main dif-
ference of the MRT over the LBGK is that all the particle distributions are not relaxed to the equilibrium state at the same
rate. A particular case of MRT is the two relaxation times (TRT), which has been applied to solve mass transport equations
and is capable of reducing numerical instabilities [25].

In this work, we focus on the stability of the LBM when solving the advection–diffusion equation (ADE). To our knowl-
edge, the stability problem of using the LBGK to solve the ADE has not been fully discussed, and the aforementioned methods
have mainly focused on hydrodynamics equations. To date, no clear stability boundaries have been provided for the LBGK
when solving the ADE.

In this study, we carry out linear stability analysis of the LBGK and investigate the relationship between the stability of
LBGK and the non-negativity of EDFs since some studies have reported that negative values of the EDFs could quickly lead to
numerical instability [26,27]. Linear stability analysis is suitable and can provide insightful information when the hydrody-
namic gradients are weak and the flow varies slowly in time (e.g. flows in porous media). Suga [28] carried out linear stability
analysis on the LBGK for the ADE, and delineated stability boundaries for several two-dimensional lattices. However, only
linear EDFs were considered and the ratio between the lattice speed and the speed of sound was constrained to a specific
value, which creates a dependency among the lattice Peclet number, the Courant number, and the relaxation time. In this
study, we eliminate this constraint and investigate the linear stability analysis and non-negativity of EDFs in three different
lattices. We found that it is crucial for the linear stability and non-negativity analyses to identify the dimensionless param-
eters locally governing the LBGK.

The rest of this paper is organized as follows: Section 2 formulates the dimensionless EDFs in terms of a scaled Peclet
number, Courant number, relaxation time, and flow direction. Section 3 derives non-negative domains for three different lat-
tices and two types of EDFs. Section 4 introduces the linear stability analysis of the LBGK. Section 5 implements the linear
stability analysis on the LBGK to delineate stability domains and compares them to the non-negative domains. Section 6
implements numerical examples to validate the stability and non-negativity domains found in Section 5. Section 7 concludes
this study.

2. Dimensionless analysis in LBM

2.1. LBM with Bhatnagar–Gross–Krook (BGK) collision operator

The LBM was first developed to solve the equations of hydrodynamics based on the kinetic theory of gases described by
the Boltzmann equation. The discrete Boltzmann equation for describing dynamics of local particle distribution functions in
a discrete velocity field is
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