

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereoselective total synthesis of (+)-(6R,2'S)-cryptocaryalactone and (-)-(6S,2'S)-epi cryptocaryalactone

Gowravaram Sabitha*, V. Bhaskar, S. Siva Sankara Reddy, J.S. Yadav

Organic Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO

Article history: Received 12 June 2008 Received in revised form 12 August 2008 Accepted 13 August 2008 Available online 15 August 2008

Keywords: α,β-Unsaturated δ-lactone Base catalyzed conjugate addition Z-Wittig olefination Stereoselective reduction cis Wittig olefination 1,3-Polyol

ABSTRACT

The total synthesis of (+)-(6R,2'S)-cryptocaryalactone and (-)-(6S,2'S)-epi cryptocaryalactone is reported based on stereoselective reduction of δ -hydroxy β -keto ester to install 1,3-polyol system, cis Wittig olefination, and lactonization as the key steps. The synthesis of (-)-(6S,2'S)-epi cryptocaryalactone is also reported using syn-benzylidene acetal formation and a preferential Z-Wittig olefination reaction and lactonization as the key steps.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Substituted α,β -unsaturated δ -lactones (e.g., styryllactones) are an important class of natural products with a wide range of biological activity. Over the past two decades an increasing number of α -pyrones have been isolated from a variety of sources. Recently identified lactone natural products include Tarchonanthus lactone 1,2 Strictifolione 2,3 Cryptocarya diacetate 3,4 and Cryptocarya triacetate **4**.⁴ (+)-(6R,2'R)-Cryptocaryalactone **5**,⁵ (+)-(6R,2'S)cryptocaryalactone $7,^6$ and its enantiomer (-)-(6S,2'R)-cryptocaryalactone 8^7 (1,3-polyol-derived α,β-unsaturated δ-lactones) are such examples isolated from Cryptocarya wyliei, Cryptocarya bourdilloni, and Cryptocarya moschata, respectively (Fig. 1). Meyer synthesized (-)-(6S,2'S)-epi cryptocaryalactone $\mathbf{6}$,8 enantiomeric pair of (+)-(6R,2'R)-cryptocarvalactone **5**. Cryptocarva species have been used as traditional medicines in South Africa for their anti-inflammatory and other activities. 9,10 Some of the pyrones and styrylpyrones showed larvicidal and antifertility activities, in addition to inhibition of breast cancer cell lines growth. 11-14

Therefore, the synthesis of various cryptolactones is of much importance. Till date, two reports on the synthesis of (+)-(6R,2'S)-cryptocaryalactone $\mathbf{7}^{15,8}$ and a single report on the synthesis of (-)-(6S,2'S)-epi cryptocaryalactone $\mathbf{6}^{8}$ have appeared. As part of our studies directed toward the synthesis of biologically active

lactones, 16 we herein report the synthesis of (+)-(6R,2'S)-cryptocaryalactone **7** and (-)-(6S,2'S)-epi cryptocaryalactone **6**.

2. Results and discussion

The synthesis of these molecules started from δ -hydroxy β -keto ester **11** (Schemes 1 and 2) prepared from iodobenzene **9** and chiral acetylenic alcohol **10** using Cosford protocol as reported by us. ^{16d} anti-Selective reduction of **11** with Me₄NBH(OAc)₃¹⁷ in acetonitrile/acetic acid (1:1) at 0 °C resulted in exclusive formation of the anti-3,5-dihydroxy ester **12** in 79% yield (syn/anti 1:9). The mixture was separated by flash column chromatography, and the anti-dihydroxy ester **12** was characterized as acetonide **13** (91%), prepared under conventional reaction conditions using 2,2'-dimethoxy propane in CH₂Cl₂ catalyzed by pyridinium para-toluenesulfonate. The stereochemical assignment of the newly created center was made based on Rychnovsky's analogy¹⁸ wherein the ¹³C NMR spectra of **13** exhibited acetonide methyl carbon peaks at δ 24.6 and 25.2 and quaternary carbon at δ 100.7, which were characteristic of the acetonide of an anti-1,3-diol moiety (Scheme 1).

The ester group in **13** was reduced by LAH in THF at 0 °C, the subsequent oxidation of which by *ortho*-iodoxybenzoic acid (IBX) in DCM/DMSO at 0 °C furnished the corresponding aldehyde in good yield, which was then chain-elongated on reaction with a Still–Gennari reagent¹⁹ [(F_3 CCH $_2$ O) $_2$ POCH $_2$ COOMe, NaH, THF, -78 °C, 67% over three steps] to provide the corresponding α , β -unsaturated ester **14** predominantly as the (Z)-isomer, along with

^{*} Corresponding author. Tel./fax: +91 40 27160512. E-mail address: gowravaramsr@yahoo.com (G. Sabitha).

Figure 1.

(+)-(6R,2'S)-cryptocaryalactone 7

(-)-(6S,2'S)-epi cryptocaryalactone 6

(+)-(6R,2'R)-cryptocaryalactone 5

Scheme 1. Reagents and conditions: (a) $Me_4NBH(OAc)_3$, acetonitrile/acetic acid (1:1), $0\,^\circ C$, $3\,h$, 79%; (b) 2,2'-dimethoxy propane, CH_2Cl_2 , PPTS, $2\,h$, rt, 91%; (c) (i) LiAlH₄, THF, $30\,$ min, $0\,^\circ C$ to rt, $30\,$ min; (ii) IBX, DCM/DMSO, $0\,^\circ C$ to rt, $4\,h$; (iii) $(F_3CCH_2O)_2$ -POCH $_2CO_2Me$, NaH, dry THF, $-78\,^\circ C$, $60\,$ min, 67% (over three steps); (d) PPTS, methanol, rt, $4\,h$; (e) $Ac_2O/pyridine$, CH_2Cl_2 , rt, $2\,h$, 56%.

the traces of trans isomer that could be separated by flash column chromatography. Compound **14** was characterized by ^1H and ^{13}C NMR spectroscopy. In the ^1H NMR spectrum, the olefinic protons resonated at δ 5.84 as a doublet of triplet (*J*=11.7, 1.5 Hz) and at δ 6.35 as doublet of doublet (*J*=11.7, 4.7 Hz) confirming the (*Z*)-geometry of the double bond. Finally, acid catalyzed deprotection of the acetonide group, concomitant cyclization using pyridinium para-toluenesulfonate in methanol at room temperature for 4 h, and acetylation (Ac₂O/pyridine/CH₂Cl₂/rt) afforded the target compound **7** (56% over two steps), [α | $_{D}^{5}$ +17.8 (*c* 0.25, CHCl₃); lit. $[\alpha$ | $_{D}^{25}$ +15.55 (*c* 2.52, CHCl₃). The spectral data of synthetic **7** were in accordance with those of the natural product. 6

Similarly, the other stereoisomer **6**, $[\alpha]_D^{25}$ –75.4 (c 0.7, CHCl₃), lit.⁸ $[\alpha]_D^{5}$ –75.1 (c 0.68, CHCl₃) (Scheme 2), was also obtained from **11** by stereoselective syn reduction using catecholborane^{18b,20} and then by following a similar sequence of reactions as detailed in Scheme 1. The stereochemical assignment of the newly created center was made based on Rychnovsky's analogy¹⁸ wherein the ¹³C NMR spectra of **17** exhibited acetonide methyl carbon peaks at δ 19.7 and 30.0 and quaternary carbon at δ 99.0, which were characteristic of the acetonide of syn-1,3-diol moiety. The target molecule **6** was isolated as a white solid, mp 127–129 °C (reported as liquid in lit. 8).

(-)-(6S,2'R)-cryptocaryalactone 8

Scheme 2. Reagents and conditions: (a) catecholborane, dry THF, $-10\,^{\circ}$ C, 4 h, 92%; (b) 2,2'-dimethoxy propane, CH₂Cl₂, PPTS, 2 h, rt, 89%; (c) (i) DIBAL–H, DCM, $-78\,^{\circ}$ C, 60 min; (ii) (F₃CCH₂O)₂POCH₂CO₂Me, NaH, dry THF, $-78\,^{\circ}$ C, 30 min, 66% (over two steps); (d) PPTS, methanol, rt, 4 h, 63%; (e) Ac₂O/pyridine, CH₂Cl₂, 0 $^{\circ}$ C to rt, 1 h, 57%.

Diagnostic ¹³C NMR shifts of the acetonides **13** and **17** derived from the diols **12** and **16** are shown in Scheme 3.

24.6 25.2 30.0 99.0
$$CO_2$$
Et 13 R= Ph Scheme 3.

We also report an alternate and convenient synthesis of (-)-(6S,2'S)-epi cryptocaryalactone **6** based on benzylidene acetal and *Z*-Wittig olefination reactions as key steps (Scheme 4). The synthesis of **6** began from the known aldehyde 20^{16d} prepared from iodobenzene **9** and an acetylenic alcohol **10**. The aldehyde **20** was subjected to a Wittig reaction with the stable ylide, ethoxy-carbonylmethylene triphenylphosphorane to furnish the α,β -unsaturated ester **21** in 91% yield. Next, the TBDPS group was removed using TBAF in THF to afford **22** in 82% yield. Benzylidene acetal (protected syn-1,3-diol) **23** was prepared in 60% yield by base catalyzed intramolecular conjugate addition using benzaldehyde and potassium tert-butoxide in dry THF at 0 °C for 2 h and pH 7 buffer phosphate solution. ²¹

Next, the ester group in 23 was reduced with LAH in THF to furnish the alcohol 24 in 85% yield. The primary alcohol 24 was subjected to oxidation in the presence of o-iodoxybenzoic acid (IBX) in DCM/DMSO at $0\,^{\circ}\text{C}$ to furnish the corresponding aldehyde

Download English Version:

https://daneshyari.com/en/article/5227601

Download Persian Version:

https://daneshyari.com/article/5227601

Daneshyari.com