Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Intramolecular Kulinkovich-de Meijere reactions of various disubstituted alkenes bearing amide groups

Claire Madelaine a, Nouara Ouhamou a, Angèle Chiaroni a, Emeline Vedrenne b, Laurence Grimaud b. Yvan Six a,*

a Institut de Chimie des Substances Naturelles, UPR 2301 du C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France

ARTICLE INFO

Article history Received 2 April 2008 Received in revised form 10 June 2008 Accepted 17 June 2008 Available online 21 June 2008

Keywords: Kulinkovich-de Meijere reaction Ligand exchange Metathesis Titanium Titanacyclopropanes

ABSTRACT

A range of amides fitted with (E) or (Z) disubstituted alkene groups were prepared and evaluated in intramolecular Kulinkovich-de Meijere reactions. The corresponding aminocyclopropanes were obtained with high diastereoselectivity. Good yields could be achieved with substrates bearing suitable substitutions at the olefin moieties.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The reaction of tertiary carboxylic amides with titanium alkoxides of the form XTi(OⁱPr)₃ (X=Me, Cl, OⁱPr) and excess amounts of Grignard reagents (normally more than 2 equiv when $X \neq Me$) is a powerful method for the preparation of aminocyclopropanes (Kulinkovich-de Meijere reaction).¹⁻⁴ In the presence of alkenes, the putative intermediate titanacyclopropane species A initially formed can undergo ligand exchange to give complex B, which leads to cyclopropane products resulting from alkene-amide coupling (Scheme 1).^{5,6} This process is essentially limited to monosubstituted alkenes, even using cyclic Grignard reagents such as cyclo-pentylmagnesium chloride or cyclo-hexylmagnesium chloride, which have been shown to generally drive the equilibrium towards the formation of complex **B**. Good yields have nonetheless been obtained from disubstituted alkenes in the special cases where they were part of conjugated polyene systems or geometrically constrained rings.8-10

A few years ago, we reported a study dealing with intramolecular Kulinkovich–de Meijere reactions starting from a few (Z) and (E) N-hex-3-enyl acetamides. 11 Although these reactions were

Scheme 1. Kulinkovich-de Meijere reactions, without or with alkene ligand exchange.

poorly efficient because of competitive intermolecular reactions, they were found to be totally diastereoselective. A mechanistic hypothesis was formulated to account for the stereochemistry of the desired products, supported by a study published afterwards by Casev et al.¹²

In order to improve these intramolecular reactions, we decided to investigate the effect of an additional functional group on the substrate. Indeed, a suitable group might coordinate to the titanium intermediate complex C and direct the ligand exchange elementary step (Scheme 2). Our strategy for a rapid access to various substrates was to prepare them by cross-metathesis from the parent compound N-but-3-envl-N-phenylacetamide 1a.

^b École Nationale Supérieure des Techniques Avancées, Laboratoire Chimie et Procédés, 32 Bd Victor, 75739 Paris Cedex 15, France

^{*} Corresponding author. Tel.: +33 (0)1 6982 3086; fax: +33 (0)1 6907 7247. E-mail address: vvan.six@icsn.cnrs-gif.fr (Y. Six).

Scheme 2. Intramolecular Kulinkovich-de Meijere reaction with substrate-directed ligand exchange.

2. Results and discussion

Using Grubbs second generation catalyst, the cross-coupling metathesis of **1a** with various alkenes turned out to be of poor efficiency and feeble reproducibility due to double-bond migration and/or competition with homo-coupling processes. The use of a catalytic amount of 2,6-dichloro-1,4-benzoquinone (DQ), which inhibits double-bond migration, ¹³ gave satisfactory and reliable

results in the preparation of **1b** as well as the cross-metathesis of **1a** with excess amounts of allyl alcohol, 3-buten-1-ol or 4-penten-1-ol, readily granting access to compounds **1c-h** (Table 1, entries 1–7). We recently reported that a catalytic amount of a boron-based Lewis acid such as chlorocatecholborane could enhance the efficiency of cross-metathesis reactions involving nitrogen-containing alkenes. Compounds **1i-l** were prepared in moderate to excellent yields using this method, with high diastereoselectivity in favour of the *E* isomers (Table 1, entries 8–11).

For comparison purposes, n-butyl derivatives (E)-1m and (Z)-1m were prepared in pure diastereoisomeric form following independent routes (Scheme 3). A range of pure (Z) alkenyl amides were also synthesised from alcohol (Z)-1c, obtained by standard cleavage of the para-methoxybenzyl (PMB) protected compound (Z)-1n. This (Z) homoallylether, as well as the analogous benzyl derivative (Z)-1e, was prepared as a single diastereoisomer using the chemistry of Sato, namely via the intermediary of titanacyclopropene complexes generated from the corresponding alkynes (Scheme 4). 17,18

With alkenyl amides **1b-q** in hand, they were submitted to the intramolecular Kulinkovich–de Meijere reaction conditions. The results are presented in Table 2, as well as that obtained from the reference compound **1a** (entry 1).^{5,19} In agreement with our

Table 1Preparation of alkenyl amides **1b–l** by cross-metathesis using Grubbs second generation catalyst

Entry	Starting alkene(s)	Method ^a	Product		Yield % (E/Z ratio)
1	1a	A	Ph. N. Ph	1b	60 (85:15)
2	1a (1.0 equiv) and 3-buten-1-ol (4.0 equiv)	A	Ph.N.OH	1c	71 (75:25) ^b
3	1a (1.0 equiv) and 3-buten-1-ol (4.0 equiv)	Α	Ph OTBS	1d	66 (85:15) ^c
4	1a (1.0 equiv) and 3-buten-1-ol (4.0 equiv)	A	Ph-NOBn	1e	59 (85:15) ^c
5	1a (1.0 equiv) and 3-buten-1-ol (4.0 equiv)	A	Ph.NOMe	1f	60 (85:15) ^c
6	1a (1.0 equiv) and allyl alcohol (4.0 equiv)	Α	Ph N OBn	1g	33 (89:11) ^c
7	1a (1.0 equiv) and 4-penten-1-ol (4.0 equiv)	Α	Ph N OBn	1h	45 (80:20) ^c
8	1a (1.0 equiv) and methyl acrylate (1.0 equiv)	В	Ph CO ₂ Me	1i	91 (>98:2)
9	1a (1.0 equiv) and <i>tert</i> -butyl acrylate (1.0 equiv)	В	Ph CO ₂ tBu	1j	72 (>98:2)
10	1a (1.0 equiv) and phenylvinylsulfone (1.0 equiv)	В	Ph-N SO ₂ Ph	1k	44 (>98:2)
11	1a (1.0 equiv) and styrene (1.0 equiv)	В	Ph-N-Ph	11	44 (>98:2)

^a Method A: the cross-metathesis reaction was performed in the presence of a catalytic amount of DQ. Method B: reaction was performed in the presence of a catalytic amount of chlorocatecholborane (see Section 4 for details).

b Combined yield for the cross-metathesis reaction, protection of the alcohol function as a *tert*-butyldimethylsilyl ether **1d**, purification and deprotection under acidic conditions (see Ref. 14).

Combined yield for the cross-metathesis reaction and protection of the alcohol function either as a tert-butyldimethylsilyl, a benzyl or a methyl ether (see Ref. 14).

Download English Version:

https://daneshyari.com/en/article/5227806

Download Persian Version:

https://daneshyari.com/article/5227806

Daneshyari.com