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a b s t r a c t

An accurate and efficient algorithm, called fast inverse using nested dissection (FIND), for
computing non-equilibrium Green’s functions (NEGF) for nanoscale transistors has been
developed and applied in the simulation of a novel dual-gate metal-oxide-semiconductor
field-effect transistor (MOSFET) device structure. The method is based on the algorithm
of nested dissection. A graph of the matrix is constructed and decomposed using a tree
structure. An upward and downward traversal of the tree yields significant performance
improvements for both the speed and memory requirements, compared to the current
state-of-the-art recursive methods for NEGF. This algorithm is quite general and can be
applied to any problem where certain entries of the inverse of a sparse matrix (e.g., its diag-
onal entries, the first row or column, etc.) need to be computed. As such it is applicable to
the calculation of the Green’s function of partial differential equations. FIND is applicable
even when complex boundary conditions are used, for example non reflecting boundary
conditions.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The non-equilibrium Green’s function (NEGF) approach is being considered as a state-of-the-art modeling tool in predict-
ing performance and designing emerging nanoscale devices. Development of multi-dimensional simulators based on the
NEGF approach is crucial to capture both the quantum mechanical effects and the effect of scattering with phonons and other
electrons. Despite the fact that transport issues for nano-transistors, nanowires and molecular electronic devices are very
different from one another, they can be treated with the common formalism provided by the NEGF [1]. The approach is based
on the coupled solution of the Schrödinger and Poisson equations. So far, the difficulties in understanding the various terms
in the resultant equations and the computational burden needed for its actual implementation are perceived as great
challenges. A successful utilization of the Green’s function approach commercially is the nano-electronics modeling (NEMO)
simulator [2], which is effectively 1D and is primarily applicable to resonant tunneling diodes. Accurate and reliable multi-
dimensional modeling of realistic future nanoscale devices requires enormous computational efforts, yet the currently
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available algorithms are prohibitively expensive. This paper focuses on an accurate and efficient implementation of the NEGF
approach for 2D MOSFET device structures.

Our algorithm, fast inverse using nested dissection (FIND), reduces the computational cost of the most expensive part of
NEGF, which is the solution of the Green’s function equation for the electron density, which is then used in the Poisson equa-
tion. In a typical simulation, the Poisson equation needs to be solved self-consistently with the Schrödinger equation. Con-
sequently, the electron density gets typically computed multiple times until convergence is achieved. This leads to huge
computational costs which FIND can reduce by orders of magnitude.

The most expensive calculation is computing some of (but not all) the entries of the matrix Gr [1]:

GrðEÞ ¼ ½EI � H � R��1 ¼ A�1 ðretarded Green’s functionÞ ð1Þ

and G<(E) = GrR<(Gr)� (less-than Green’s function). In these equations, I is the identity matrix, and E is the energy level. � de-
notes the transpose conjugate of a matrix. The Hamiltonian matrix H describes the system at hand (e.g., nano-transistor). It is
usually a sparse matrix with connectivity only between neighboring mesh nodes, except for nodes at the boundary of the
device which may have a non-local coupling (e.g., non-reflecting boundary condition). The matrices R and R< correspond
to the self energy and can be assumed to be diagonal matrices. See Svizhenko [3] for this terminology and notations. In this
work, all these matrices are considered to be given and we will focus on the problem of efficiently computing some entries in
Gr and G<. As an example of entries which must be computed, the diagonal entries of Gr are required to compute the density
of states, while the diagonal entries of G< allow computing the electron density. The current can be computed from the upper
diagonal entries of G<.

Even though the matrix A in Eq. (1) is, by the usual standards, a mid-size sparse matrix of size typically 10,000 � 10,000,
computing the entries of G< is a major challenge since this operation is repeated at all energy levels for every iteration of the
Poisson–Schrödinger solver. Overall, the diagonal of G<(E) for the different values of the energy level E can be computed as
many as thousands of times.

The problem of computing certain entries of the inverse of a sparse matrix is relatively common in computational engi-
neering. Examples include:

� Least square fitting: in the linear least-square fitting procedure, coefficients ak are computed so that the error
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is minimal, where (xi,Yi) are the data points. It can be shown, under certain assumptions that, in the presence of measure-
ment errors in the observations Yi, the error in the coefficients ak is proportional to Ckk where C is the inverse matrix of A:

Ajk ¼
X

i

/jðxiÞ/kðxiÞ

� Eigenvalues of tri-diagonal matrices: the inverse iteration method attempts to compute the eigenvector v associated with eigen-
value k by solving iteratively the equation

ðA� k̂IÞxk ¼ skxk�1

where k̂ is an approximation of k and sk is used for normalization. Varah [4] and Wilkinson [5–7] have extensively dis-
cussed optimal choices of starting vectors for this method. An important result is that, in general, choosing the vector
el (lth vector in the standard basis), where l is the index of the column with the largest norm among all columns of
ðA� k̂IÞ�1, is a nearly optimal choice. A good approximation can be obtained by choosing l such that the lth entry on
the diagonal of ðA� k̂IÞ�1 is the largest among all diagonal entries.

� Accuracy estimation: when solving a linear equation Ax = b, one is often faced with errors in A and b, either because of uncer-
tainties in physical parameters or inaccuracies in their numerical calculation. In general the accuracy in the computed
solution x will depend on the condition number of A: kAkkA�1k, which can be estimated from the diagonal entries of A
and its inverse in some cases.

� Sensitivity computation: when solving Ax = b, the sensitivity of xi to Ajk is given by oxi/oAjk = xk(A�1)ij.

Many other examples can be found in the literature.
Currently the state-of-the-art is a method developed by Klimeck and Svizhenko et al. [3], called the recursive Green’s

function method (RGF). This approach can be shown to be the most efficient for ‘‘nearly 1D” devices, i.e. devices which
are very elongated in one direction and very thin in the two other directions.

Assume that the matrix A is the result of discretizing a partial differential equation in 2D using a local stencil, e.g., with a 5
point stencil. Assume the mesh is the one given on Fig. 1.

For a 5 point stencil, the matrix A can be written as a tri-diagonal block matrix where blocks on the diagonal are denoted
by Aq (1 6 i 6 n), on the upper diagonal by Bq (1 6 i 6 n � 1), and on the lower diagonal by Cq (2 6 i 6 n).

RGF computes the diagonal of A�1 by computing recursively two sequences. The first sequence, in increasing order, is de-
fined recursively as [3]:
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