Journal of Computational Physics 227 (2008) 9428-9462

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Towards a compact high-order method for non-linear hyperbolic systems,
II. The Hermite-HLLC scheme

G. Capdeville *

Département de Mécanique des Fluides, Ecole Centrale de Nantes, 1, Rue de la Noe, B.P. 92101, 44321 Nantes cedex 3, France

ARTICLE INFO ABSTRACT
ArtiC{e history: In a finite-volume framework, we develop an approximate HLL Riemann solver specific to
Received 21 March 2008 weakly hyperbolic systems. Those systems are obtained by considering not only the vari-

Received in revised form 19 June 2008
Accepted 25 June 2008
Available online 2 July 2008

able but also its first spatial derivative, as unknowns. To this aim, we rely upon the theory
of “s-shock waves”, newly developed in the scalar case.

First, we demonstrate that the extended version of the HLLE scheme to weakly hyper-
bolic systems is compatible with the existence of Dirac measures in the solution. Then,
we develop a specific Hermite Least-Square (HLSM) interpolation that enables to generate
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Least-square reconstruction a high-order a_nd compact schemc_e, W}thout creaFmg spurious osc111§t10ns in the rgconstr.uc-
Hermite polynomial tion of the variable or its first derivative. Extensive numerical experiments make it possible
Weakly hyperbolic systems to validate the method and to check convergence to entropy solutions.

5-Shock waves Relying upon those results, we construct a new HLL Riemann solver, suited for the
Dirac measure extended one-dimensional Euler equations. For this purpose, we introduce the contribu-
Rankine-Hugoniot deficit tion of a contact discontinuity inside the definition of the solver. By using a formal analogy
Monotonicity constraints with the scalar study, we demonstrate that this solver tolerates the existence of “s-shock

waves” in the solution. Numerical experiments that follow help to validate some of the
assumptions made to generate this scheme.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we develop a Riemann solver for a class of coupled hyperbolic systems of conservation laws. For that pur-
pose, we rely upon the newly developed theory of “é-shock waves”.
Let us briefly recall this theory and its main results.

1.1. 6-Shock wave type solutions [1-6]

For some cases of coupled hyperbolic systems, “non-classical solutions” may occur when the Riemann problem does
not possess a weak solution except for some particular initial data. In order to solve Cauchy problems in these situations,
it becomes necessary to introduce new singularities called “é-shocks”, which are solution of the coupled hyperbolic
systems.

To illustrate this problem, let us consider the following scalar non-linear conservation law:

u+f(u), =0 (1)
where, f{u), is a convex smooth function, f'(u) > 0.
* Tel.: +33 2 4037 1651; fax: +33 2 4037 2523.

E-mail address: guy.capdeville@ec-nantes.fr

0021-9991/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2008.06.024


mailto:guy.capdeville@ec-nantes.fr
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

G. Capdeville/Journal of Computational Physics 227 (2008) 9428-9462 9429

By differentiating this equation with respect to x and denoting v = u,, we obtain the following coupled hyperbolic system:

{uf+f(u)x =0
ve+ (f'(wv), =0

System (2) is extremely degenerate - sometimes it is called “weakly hyperbolic” - with repeated eigenvalue /. = f(u) and
repeated eigenvector (0,1)". As a consequence, the linear component, v, of the solution, may contain Dirac measures while
the non-linear component, u, preserves bounded variations.

If we consider the Cauchy problem for system (2), with the initial data

2)

Wwvh x<0
,v) x>0

(u(x,t = 0),v(x,t = 0)) = { (3)

where (u, v)* " are given constants, one can demonstrate that there are only two kinds of solutions for such a problem. The
first one involves “§-shock” waves, the second involves vacuums.
According to [5,7], the following theorem holds:

(a) if u' > u", it exists a unique weak solution to the Cauchy problem (2) and (3). This solution has the following form:
u(x,t) = u' + [u] x H(—x + x5(t)) @
V(x,t) = VP4 [V] x H(=x 4 x5(t)) — e(t) x (—x + x5(t))

Moreover, this solution satisfies the entropy condition

’ dX !
fh) < g <fran (5)
where we denoted: [-] = (-)" — (-)}, the jump of the variable u or v across the discontinuity. H(x) is the Heaviside function and
§(x) is the delta function. In addition, functions xs(t) and e(t) are defined by the system
dx _ [fw)
T M

)
g — () - 22|

with the initial data determined by (3) and x,(0) = 0.

The solution (4) that satisfies (5) and (6), is called a “6-shock” wave solution of the Cauchy problem (2) and (3). In this
solution, the v component contains a § measure while the u component is piecewise constant. The pair of equations defining
(6) constitutes the “d-shock Rankine-Hugoniot” conditions for the particular choice, (3).

The first equation of (6) is the standard Rankine-Hugoniot condition and gives the velocity of the é-shock wave. This
velocity verifies the classical entropy condition, (5), and means that all characteristics on both sides of the discontinuity,
are in-coming.

The right-hand side of the second equation in (6) is less classical: it is called the “Rankine-Hugoniot deficit”. In [8], it is
demonstrated that the meaning of amplitude, e(t), of é-function in v, is the area under the graph y = v(x,(t), t).

Thus, the system of the Rankine-Hugoniot conditions, (6), determines the trajectory x = x,(t) of a 5-shock wave and the
coefficient e(t) of the singularity.

(b) If u' < u", then, the weak solution to the Cauchy problem (2) and (3), is the following one, according to [7]:

(', V) X<f’( )Xf
(u(x,0),v(x,t)) = ([ 0) f Sx<fu)xt (7)

v x= f’(ur) x t

=Xs ()

In such a case, the first component, u, of solution (7), is the rarefaction wave while the second component, v, contains the
intermediate “vacuum state”: v=0.

In this article, we use those theoretical results to construct a HLL Riemann solver that is compatible with the existence of
a d-shock solution in (2).

1.2. Constructing a HLL Riemann solver for weakly hyperbolic systems

Recently, we developed a Hermite Least Square Monotone (HLSM) interpolation technique, in a finite-volume framework.
This procedure aims at generating a compact high-order numerical method for systems of hyperbolic conservation laws [9].
For that purpose, we defined as discrete unknowns not only the primitive variable, u, but also its first spatial derivative,
v(=uy). Primitively, those two quantities are defined as solutions of a weakly hyperbolic system, identical to (2) and are
evolved in time by using an approximate HLL Riemann solver, simply extended from [10].
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