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a b s t r a c t

In a finite-volume framework, we develop an approximate HLL Riemann solver specific to
weakly hyperbolic systems. Those systems are obtained by considering not only the vari-
able but also its first spatial derivative, as unknowns. To this aim, we rely upon the theory
of ‘‘d-shock waves”, newly developed in the scalar case.

First, we demonstrate that the extended version of the HLLE scheme to weakly hyper-
bolic systems is compatible with the existence of Dirac measures in the solution. Then,
we develop a specific Hermite Least-Square (HLSM) interpolation that enables to generate
a high-order and compact scheme, without creating spurious oscillations in the reconstruc-
tion of the variable or its first derivative. Extensive numerical experiments make it possible
to validate the method and to check convergence to entropy solutions.

Relying upon those results, we construct a new HLL Riemann solver, suited for the
extended one-dimensional Euler equations. For this purpose, we introduce the contribu-
tion of a contact discontinuity inside the definition of the solver. By using a formal analogy
with the scalar study, we demonstrate that this solver tolerates the existence of ‘‘d-shock
waves” in the solution. Numerical experiments that follow help to validate some of the
assumptions made to generate this scheme.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we develop a Riemann solver for a class of coupled hyperbolic systems of conservation laws. For that pur-
pose, we rely upon the newly developed theory of ‘‘d-shock waves”.

Let us briefly recall this theory and its main results.

1.1. d-Shock wave type solutions [1–6]

For some cases of coupled hyperbolic systems, ‘‘non-classical solutions” may occur when the Riemann problem does
not possess a weak solution except for some particular initial data. In order to solve Cauchy problems in these situations,
it becomes necessary to introduce new singularities called ‘‘d-shocks”, which are solution of the coupled hyperbolic
systems.

To illustrate this problem, let us consider the following scalar non-linear conservation law:

ut þ f ðuÞx ¼ 0 ð1Þ

where, f(u), is a convex smooth function, f00(u) > 0.
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By differentiating this equation with respect to x and denoting v � ux, we obtain the following coupled hyperbolic system:

ut þ f ðuÞx ¼ 0
vt þ ðf 0ðuÞvÞx ¼ 0

�
ð2Þ

System (2) is extremely degenerate – sometimes it is called ‘‘weakly hyperbolic” – with repeated eigenvalue k � f0(u) and
repeated eigenvector (0,1)t. As a consequence, the linear component, v, of the solution, may contain Dirac measures while
the non-linear component, u, preserves bounded variations.

If we consider the Cauchy problem for system (2), with the initial data

ðuðx; t ¼ 0Þ; vðx; t ¼ 0ÞÞ ¼ ðul; vlÞ x < 0
ður; vrÞ x > 0

(
ð3Þ

where (u, v)l, r are given constants, one can demonstrate that there are only two kinds of solutions for such a problem. The
first one involves ‘‘d-shock” waves, the second involves vacuums.

According to [5,7], the following theorem holds:

(a) if ul P ur, it exists a unique weak solution to the Cauchy problem (2) and (3). This solution has the following form:

uðx; tÞ ¼ ul þ ½u� � Hð�xþ xsðtÞÞ
vðx; tÞ ¼ vl þ v½ � � Hð�xþ xsðtÞÞ � eðtÞ � dð�xþ xsðtÞÞ

(
ð4Þ

Moreover, this solution satisfies the entropy condition

f 0ðulÞ 6 dxs

dt
6 f 0ðurÞ ð5Þ

where we denoted: [�] � (�)r � (�)l, the jump of the variable u or v across the discontinuity. H(x) is the Heaviside function and
d(x) is the delta function. In addition, functions xs(t) and e(t) are defined by the system

dxs
dt ¼

½f ðuÞ�
½u�

���
x¼xsðtÞ

de
dt ¼ ½f 0ðuÞv� � ½v� ½f ðuÞ�½u�

� ����
x¼xsðtÞ

8>><>>: ð6Þ

with the initial data determined by (3) and xs(0) = 0.
The solution (4) that satisfies (5) and (6), is called a ‘‘d-shock” wave solution of the Cauchy problem (2) and (3). In this

solution, the v component contains a d measure while the u component is piecewise constant. The pair of equations defining
(6) constitutes the ‘‘d-shock Rankine–Hugoniot” conditions for the particular choice, (3).

The first equation of (6) is the standard Rankine–Hugoniot condition and gives the velocity of the d-shock wave. This
velocity verifies the classical entropy condition, (5), and means that all characteristics on both sides of the discontinuity,
are in-coming.

The right-hand side of the second equation in (6) is less classical: it is called the ‘‘Rankine–Hugoniot deficit”. In [8], it is
demonstrated that the meaning of amplitude, e(t), of d-function in v, is the area under the graph y = v(xs(t), t).

Thus, the system of the Rankine–Hugoniot conditions, (6), determines the trajectory x = xs(t) of a d-shock wave and the
coefficient e(t) of the singularity.

(b) If ul < ur, then, the weak solution to the Cauchy problem (2) and (3), is the following one, according to [7]:

ðuðx; tÞ; vðx; tÞÞ ¼
ðul; vlÞ x 6 f 0ðulÞ � t

x
2t ;0
� �

f 0ðulÞ � t 6 x 6 f 0ðurÞ � t
ður; vrÞ x P f 0ðurÞ � t

8><>: ð7Þ

In such a case, the first component, u, of solution (7), is the rarefaction wave while the second component, v, contains the
intermediate ‘‘vacuum state”: v � 0.

In this article, we use those theoretical results to construct a HLL Riemann solver that is compatible with the existence of
a d-shock solution in (2).

1.2. Constructing a HLL Riemann solver for weakly hyperbolic systems

Recently, we developed a Hermite Least Square Monotone (HLSM) interpolation technique, in a finite-volume framework.
This procedure aims at generating a compact high-order numerical method for systems of hyperbolic conservation laws [9].
For that purpose, we defined as discrete unknowns not only the primitive variable, u, but also its first spatial derivative,
v(�ux). Primitively, those two quantities are defined as solutions of a weakly hyperbolic system, identical to (2) and are
evolved in time by using an approximate HLL Riemann solver, simply extended from [10].
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