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a b s t r a c t

We consider the numerical time integration of a class of reaction–transport systems that
are described by a set of ordinary differential equations for primary variables. In the gov-
erning equations, the terms involved may require the knowledge of secondary variables,
which are functions of the primary variables. Specifically, we consider the case where,
given the primary variables, the evaluation of the secondary variables is computationally
expensive. To solve this class of reaction–transport equations, we develop and demonstrate
several computationally efficient splitting schemes, wherein the portions of the governing
equations containing chemical reaction terms are separated from those parts containing
the transport terms. A computationally efficient solution to the transport sub-step is
achieved through the use of linearization or predictor–corrector methods. The splitting
schemes are applied to the reactive flow in a continuously stirred tank reactor (CSTR) with
the Davis–Skodjie reaction model, to the COþH2 oxidation in a CSTR with detailed chem-
ical kinetics, and to a reaction–diffusion system with an extension of the Oregonator model
of the Belousov–Zhabotinsky reaction. As demonstrated in the test problems, the proposed
splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-
order accuracy in time.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this study, we consider the numerical solution of the time dependent reaction–transport systems described by the fol-
lowing set of nonlinear ordinary differential equations:

dr
dt
¼ Sðr;uðrÞÞ þMðr;uðrÞ; tÞ; ð1Þ

where: the dependent variables r (of dimension nr) are called primary variables; the variables u (of dimension nu), which are
known functions of r, are called secondary variables; S (of dimension nr) denotes the rate-of-change of the primary variables
due to chemical reactions; and M (of dimension nr) denotes the rate-of-change of the primary variables due to transport pro-
cesses such as diffusion, heat loss, or inflow/outflow. For general reaction–diffusion systems described by a set of partial dif-
ferential equations (PDEs), the governing PDEs can be transformed into a set of ODEs of the form of Eq. (1) by the method of
lines. That is, by discretizing in space only, one transforms the PDEs into a set of ODEs for the variables at the grid nodes. It is
important to appreciate the mathematical difference between the reaction operator S and the transport operator M. The
operator S is independent of time; in the method of lines, the reaction process is separate for each grid point. The operator
M may depend on time because of external interactions or time-dependent boundary conditions; in the method of lines, the
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transport process is not separate for different grid points. As shown in Eq. (1), the reaction and transport terms may require
the knowledge of the secondary variables, which are functions of primary variables. In this study, we focus on the circum-
stance in which the evaluation of the function u(r) is computationally expensive. Moreover we assume that the reaction
operator S is stiff whereas M is not.

Equations of the form of Eq. (1) arise in the formulation of a variety of physical problems. One example is the description
of reactive flows with enthalpy being the (primary) energy variable. The governing equations are solved for the primary vari-
ables r consisting of the velocities, pressure, enthalpy and the concentrations of the chemical species involved. The secondary
variables u may consist of density and temperature. The knowledge of density and temperature is needed for evaluating
transport properties and the corresponding terms in the energy equation (if heat loss due to convection or radiation is pres-
ent). For a mixture of thermally perfect gases, the standard nonlinear polynomial dependencies of enthalpy on temperature
(see CHEMKIN [1]) are often used for all chemical species involved. Due to this nonlinear relationship, given the enthalpy of
the mixture and species concentrations, an iteration procedure has to be employed to obtain temperature. This may incur a
significant computational burden for certain simulations.

Another example where equations of the form of Eq. (1) arise is in the reduced description of reactive flows. (For simplic-
ity, we consider the reduced description of reactive flows, where the pressure is taken to be constant and uniform.) In the
reduced description, the reactive system is described in terms of the primary variables r, which can be taken to be enthalpy,
concentrations of some species and linear combinations of the concentrations of all the species (depending on the method
used). For example, the primary variables r can consist of enthalpy and the concentrations of specified ‘‘major” species. The
secondary variables u can consist of the concentrations of the ‘‘minor” species and temperature. In the reduced description,
the secondary variables u, which are functions of the primary variables r, are needed for evaluating chemical reactions. The
knowledge of u is also needed for evaluating transport properties and heat loss processes (if heat loss due to convection or
radiation is present) in the transport term. In the reduced description provided by different dimension-reduction methods
such as the quasi-steady state assumption (QSSA) method [2], the rate-controlled constrained equilibrium (RCCE) method
[3], and the ICE-PIC method [4], the evaluation of u(r) is computationally expensive. For example, in the RCCE method, given
the primary variables r, a constrained equilibrium problem must be solved to obtain the secondary variables u(r). In ICE-PIC
u is obtained from r by a yet more expensive process involving the solution of stiff ODEs.

Eq. (1) can be efficiently solved by numerical schemes based on an operator-splitting approach. These schemes split the
governing equation into sub-equations, usually with each having a single operator capturing only a portion of the physics
present, and integrate each separately and sequentially in time to advance to the next time step [5,6]. In [7,8], for example,
operator-splitting schemes are used to separate chemical reaction processes from transport processes in atmospheric mod-
eling simulations. The results from the sub-steps are then combined in such a way that the final solution accurately approx-
imates the solution to the original equation. In recent years, operator-splitting schemes have been widely applied in reactive
flow calculations [9–16]. More recently, operator-splitting schemes are combined with the storage/retrieval method, known
as in situ adaptive tabulation (ISAT) [17], for unsteady reactive flow calculations with detailed chemistry [18,19]. In this
study, we develop and demonstrate several computationally efficient, second-order accurate in time, splitting schemes
for solving Eq. (1).

The outline of the remainder of the paper is as follows. In Section 2, we first describe the Strang splitting scheme [20] for
solving Eq. (1). Then computationally more efficient methods for the transport sub-step are proposed. In Section 2, we also
propose splitting schemes based on staggered time steps. Numerical tests are reported in Section 3. Section 4 provides a dis-
cussion and conclusions.

2. Splitting schemes

To solve Eq. (1) numerically, the time is discretized in increments Dt � ðtf � t0Þ=nt , where t0 and tf are the initial and final
simulation time respectively, and nt þ 1 is the total number of time steps. (For simplicity, non-constant Dt is not discussed
here.) Then, time is discretely represented by tn ¼ t0 þ nDt, where n ¼ 0;1;2; . . . ;nt . The integration of Eq. (1) forward in
time is then performed as follows: starting from n ¼ 0, the schemes march in time steps Dt from tn to tnþ1. In the following,
we describe different splitting schemes.

2.1. Strang splitting scheme

With the Strang splitting scheme [20], reaction is separated from the transport process, and Eq. (1) is integrated over a
time step Dt as follows:

� Sub-step 1. The reaction terms are integrated over a time interval Dt=2 by solving

dra

dt
¼ Sðra;uðraÞÞ: ð2Þ

The initial condition rað0Þ is taken to be the final state r from the previous time step, and the solution to Eq. (2) is denoted
by raðDt=2Þ.

8166 Z. Ren, S.B. Pope / Journal of Computational Physics 227 (2008) 8165–8176



Download	English	Version:

https://daneshyari.com/en/article/522813

Download	Persian	Version:

https://daneshyari.com/article/522813

Daneshyari.com

https://daneshyari.com/en/article/522813
https://daneshyari.com/article/522813
https://daneshyari.com/

