

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 2170–2181

Synthesis of biantennary LacNAc-linked O-glycan (core 4) and glycopeptide thioester by benzyl protection strategy: rapid zinc reduction of GlcNTCA to GlcNAc by microwave irradiation

Akiharu Ueki, Yuko Nakahara, Hironobu Hojo* and Yoshiaki Nakahara*

Department of Applied Biochemistry, Institute of Glycotechnology, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan

> Received 1 December 2006; revised 22 December 2006; accepted 25 December 2006 Available online 22 January 2007

Abstract—A synthetic method for the core 4 O-glycan-linked Ser and Thr was developed. Highly stereoselective 3-O- and 6-O-glycosylation was achieved by using two distinctively protected N-trichloroacetyllactosaminyl fluorides (3 and 12). Microwave-assisted Zn reduction rapidly and efficiently converted N-trichloroacetylglucosamine (GlcNTCA) to N-acetylglucosamine (GlcNAc). In order to demonstrate the usefulness of the protected core $4 O$ -glycan a segment $(Gly^{34}-Gly^{58})$ of emmprin (extracellular matrix metalloproteinase inducer), a cancer metastasis-related glycoprotein, was synthesized by the solid-phase method, utilizing the pentasaccharyl Thr (2) to introduce an O-glycan in place of the native N -glycan at Asn⁴⁴.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Mucins and their O-glycans are of great importance and interest in a number of biological processes. Aberrant features of neoplastic mucins, such as overexpression and altered glycosylation, have attracted particular attention in connec-tion with metastasis.^{[1](#page--1-0)} However, only limited knowledge of the biological roles of the alteration in mucins has been obtained so far. By considering the inaccessibility of a homogeneous mucin sample from natural sources, we have studied a synthetic approach to the glycoproteins with O-glycan, and recently established an original protocol using the benzylprotected glycoamino acid building blocks in solid-phase glycopeptide synthesis.^{[2](#page--1-0)} In a previous study, we have synthesized the core 3 and core 6 oligosaccharides by glycosylating either the 3- or 6-hydroxyl group of the core N-acetylgalactosamine precursor with an N-trichloroacetyllactosaminyl glycosyl donor of high reactivity and β -selectivity. Usefulness of the synthetic O-glycan building blocks was demonstrated by the synthesis of MUC2 and MUC6 related glycopeptides.^{[3](#page--1-0)}

The N-acetylglucosaminyl substitution at both 3- and 6 position gives another core class O-glycan, known as core

4, which has been identified in the oligosaccharides from human bronchial mucins of cystic fibrosis patients, 4 secreted mucins of a human colonic cancer cell line,^{[5](#page--1-0)} human meco-nium mucins,^{[6](#page--1-0)} and sheep gastric mucins.^{[7](#page--1-0)} The core 4 oligosaccharides bearing the N-acetyllactosamine branches are of particular interest regarding an unanswered question, whether their physical, structural, and biological properties are different from those of the complex-type N-glycan as well as those of the core 2 O-glycan having an extension of N-acetyllactosamine to the core galactose residue.^{[6,8](#page--1-0)} To this end our investigations were directed to the synthesis of a glycopeptide with core 4 O-glycan. In this paper, we describe preparation of the core 4 glycoserine and glycothreonine building blocks, 1 and 2, and performance of the solid-phase glycopeptide synthesis with 2 according to the established protocol.^{[9](#page--1-0)}

2. Synthesis of the building blocks 1 and 2

We first attempted selective di-O-glycosylation of 3,4,6- O-unmasked GalN₃–Thr derivative 4^{10} 4^{10} 4^{10} with known N-trichloroacetyllactosaminyl fluoride 3^{11} 3^{11} 3^{11} (2.2 equiv) by using $\text{Cp}_2\text{ZrCl}_2/\text{AgClO}_4$ as the promoter^{[12](#page--1-0)} in CH_2Cl_2 at -15 °C, since the 4-hydroxyl group of the $GalN₃$ residue was hardly glycosylated in many cases (Fig. 1).^{[3,10,11](#page--1-0)} This simple strategy, however, was unsuccessful and gave a complex mixture of a heptasaccharide and three pentasaccharides each in 5–14% yield after consuming the glycosyl fluoride for 3 h. As the second attempt, we reacted 3 and 6-O-silylated

Keywords: Glycopeptide; Core 4 O-glycan; Solid-phase synthesis; Microwave reaction.

Corresponding authors. Tel./fax: +81 463 50 2075; e-mail addresses: hojo@keyaki.cc.u-tokai.ac.jp; yonak@keyaki.cc.u-tokai.ac.jp

^{0040–4020/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.12.088

Figure 1. Structures of the protected core 4 pentasaccharyl Ser/Thr (1 and 2) and the known intermediates (3–7).

acceptor 5[10](#page--1-0) in expectation of attaining selective 3-O-glycosylation. But a pentasaccharide (12%) derived by 3,4-di-O-glycosylation was produced along with the desired trisaccharide (13%). In this reaction, an additional complication arose from the departure of the acid-labile silyl group of 5 under the reaction conditions. Thus, we were convinced that the side reaction on the 4-hydroxyl group was unavoidable, when this reactive glycosyl donor was used with the 3,4-unprotected glycosyl acceptors. In order to secure mono 3-O-glycosylation, we decided to use 4,6-O-benzylidene GalN₃–Ser/Thr derivatives, 6^{13} 6^{13} 6^{13} and 7^{10} 7^{10} 7^{10} as the glycosyl acceptors, and instead needed a benzylidene group-free glycosyl donor that allowed selective deprotection of the 6-O

position of the $GalN₃$ residue at a later stage. Thus, a perbenzylated N-trichloroacetyllactosaminyl fluoride was synthesized as an alternative to glycosyl donor 3. Known lactosamine derivative 8^{14} 8^{14} 8^{14} was heated with ethylenediamine in n -BuOH to remove the N -phthaloyl group (Scheme 1). The resulting amine 9 was reacted with trichloroacetyl chloride in pyridine to give 10 (81% in two steps). Desilylation of 10 with $n-Bu₄NF$ in THF in the presence of excess AcOH afforded hemiacetal 11, which upon treatment with $Et₂NSF₃$ gave fluoride 12 (82% in two steps) as a mixture of anomers $(\alpha/\beta=19/1)$. Fluoride 12 seemed more reactive than 3, and reacted with glycosyl serine 6 within 0.5 h by activation with $\text{Cp}_2\text{Zr}(\text{ClO}_4)_2$ at -15 °C to afford trisaccharide 13 as

: $R^1 = H$, R^2 , $R^3 = -CH(Ph)$ -: R^1 = CH₃, R^2 , R^3 = -CH(Ph)-: $R^1 = H$, R^2 , $R^3 = H$: R^1 = CH₃, R^2 , R^3 = H

Scheme 1. Synthesis of hexabenzylated glycosyl fluoride 12 and trisaccharyl serine/threonine, 15 and 16. Reaction conditions: (a) 1,2-diaminoethane, n-BuOH, 90 °C, 2 days, 96%; (b) trichloroacetyl chloride, pyridine, 0 °C, 1.5 h, 84%; (c) n-Bu₄NF, AcOH, THF, room temperature, overnight, 89%; (d) diethylaminosulfur trifluoride, THF, 0 °C, 1 h, 92%; (e) 6 or 7, Cp₂ZrCl₂, AgClO₄, CH₂Cl₂, -15 °C, 1 h, **13** (75%), **14** (80%); (f) 80% aq TFA, CH₂Cl₂, 94% (**15**), 83% (**16**).

Download English Version:

<https://daneshyari.com/en/article/5228662>

Download Persian Version:

<https://daneshyari.com/article/5228662>

[Daneshyari.com](https://daneshyari.com/)