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Abstract

The liquid crystal molecule orientation is arranged by minimizing the so-called Oseen–Frank energy functional. For a
better understanding of these complicated orientation singularities, simplified models resulting from specific choices of
elastic constants are always of interest. In this paper a pseudo Newton method together with a multi-grid linear system
solver or preconditioner is used to compute the orientation of liquid crystal molecules based on a simplified Oseen–Frank
energy functional. The penalty method is used to deal with the unit-length constraint of liquid crystal molecules. The New-
ton and multi-grid methods do not converge when some parameters are small. A homotopy algorithm combined with mesh
refinement strategies in order to deal with small parameter cases is studied and is found to be very robust in computing the
solution of the model. The method is implemented to compute the orientation of liquid crystal molecules in domains of
typical shapes and with various rotational boundary conditions in 2D and 3D. Interesting singularity patterns are
observed.
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1. Introduction

Liquid crystals are a phase of matter whose order is intermediate between that of a liquid and that of a
crystal. The molecules are typically rod-shaped with a fixed length and their ordering is important to charac-
terize their microstructure. The nematic phase, for example, is characterized by the orientational order of the
constituent molecules. Nematics are the most commonly used phase in liquid crystal displays (LCDs), with
many such devices using the twisted nematic geometry.
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There is growing interest in the theory of liquid crystals among physicists and mathematicians due to
their broad applications. There exists a number of phases in liquid crystals. The study of phases and tran-
sition phenomenon between them (e.g. from nematic to smectic-A) is thus an important topic in the theory
of liquid crystals (see [10,11]). Classical Oseen–Frank theory (cf. [13]) suggests that the nematic phase of
liquid crystals can be described by a director field n, which minimizes the following Oseen–Frank energy
functional

WðnÞ ¼
Z

X
W ðn;rnÞdx;

where X � Ri, i = 2 or 3, is a bounded domain occupied by the liquid crystal sample, and

W ðn;rnÞ ¼ k1

2
jr � nj2 þ k2

2
jn � r � nj2 þ k3

2
jn�r� nj2 þ k2 þ k4

2
½trðrnÞ2 � ðr � nÞ2�:

Here the ki are elastic constants and k1, k2, k3 > 0 are splay, twist and bend constants, respectively. The molec-
ular orientation can be controlled with applied forces on the boundary. So we shall consider Dirichlet bound-
ary conditions. The last term ½trðrnÞ2 � ðr � nÞ2� will be dropped, since it is a divergence term and can be
reduced to a surface integral via integration by parts (see [17], Lemma 1.2). So we only need to consider

W ðn;rnÞ ¼ k1

2
jr � nj2 þ k2

2
jn � r � nj2 þ k3

2
jn�r� nj2: ð1Þ

As pointed out in [11] the full form of (1) is still too complex to be of practical use – either because the relative
values of the three elastic constants ki are unknown, or because the equilibrium equations derived from (1) are
prohibitively difficult to solve. Indeed, no theoretical analysis has been done to the general Oseen–Frank func-
tional. In such cases, a further simplification based on specific choices of elastic constants is often useful to
understand the orientation pattern. There are two typical simplifications. If k1 ¼ k2 ¼ k3 ¼ 1 then the
Oseen–Frank energy becomes

WðnÞ ¼ 1

2

Z
X
jrnj2 dx: ð2Þ

Together with a fixed length condition, say jnj ¼ 1, the solution is also called harmonic map from a 2D or 3D
compact manifold to a 2D circle or 3D sphere, respectively. Some basic numerical results and techniques have
been reported in [1,8,9,15]. It is also related to phase field models in dealing with moving interface and image
processing problems if changing n to a scalar phase field variable. There are also other studies on the coupling
of the simplified model (2) with flow field in 2D (see, e.g. [12,20,21]). If k2 ¼ k3 ¼ k þ k1, we can have another
simplification

WðnÞ ¼ 1

2

Z
X
½k1jrnj2 þ kjr � nj2�dx: ð3Þ

Although the assumption on the ratio of parameters ki may not be quantitatively true in various practical
situations, this simpler form of (1) resulting from the assumption is often a valuable tool to reach a qual-
itative insight into material properties such as molecule orientations. It is expected that, as k !1, the
asymptotic behavior of minimizers of (3) under suitable boundary conditions will provide a mathematical
representation of the phase transition process of liquid crystals from nematic phase to smectic-A phase
(see [16,19]). Some mathematical analysis for the limiting case of (3) is discussed in [2,3,17,18,22]. That is
why we are particularly interested in considering the limiting case that k � k1. It is also very challenging
to design appropriate numerical methods in this case since the ellipticity of the operator is largely reduced.
Some initial numerical results in simple 2D cases are reported in [14] where the direct method is used to
solve the resulting linear system.

In this paper we will focus on the simplified model (3) since not many theoretical and numerical results
are available. We will mainly consider three dimensional cases with k � k1. In 3D and, in particular, when
more nodes are needed due to the orientation singularities there is no hope to use a direct method to solve
the linear system resulted from the Newton’s iteration of this nonlinear problem. We shall use the multi-
grid method to solve the linear system or use it as a pre-conditioner for an iterative linear system solver
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