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Abstract

In this paper, a new ghost-fluid method for interfaces of finite thickness is described. It allows to compute efficiently
turbulent premixed flames with a finite thickness in low-Mach flows. A level set algorithm is used to track accurately
the flame and to define the overlapping region where the burned and unburned gases satisfy the jump conditions. These
algorithms are combined with a fractional-step method to alleviate the acoustic CFL constraint. The full algorithm is ver-
ified for simple flame–vortex interactions and it is validated by computing a turbulent flame anchored by a triangular
flame-holder. Finally, the algorithm is applied in the LES of an industrial lean-premixed swirl-burner.
� 2006 Elsevier Inc. All rights reserved.
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1. Motivation and objectives

Large-eddy simulation of premixed combustion is a computational challenge, because complex diffusion
and reaction processes often occur in very thin layers. The interaction of these processes with turbulence deter-
mines the main properties of the flame brush, such as its burning velocity or its thickness. In turbulent flows,
the large vortices wrinkle the flame brush and increase the flame surface, while the small scales may penetrate
into the flame and increase the flame thickness. In both cases, the turbulence leads to an increase in the burn-
ing velocity. This feature has to be captured by a combustion model. Even if the turbulent scales increase the
flame thickness, the flame brush remains difficult to resolve on LES meshes. Numerically, the premixed flame
brush is very close to an interface, but its non-zero thickness must be taken into account to represent the
flame–turbulence interactions properly.

In state-of-the-art combustion models, the issue of thin flames is overcome in very different ways. The thick-
ened-flame model (TFLES) [1] artificially thickens the flame brush, and the source terms in the species and
energy equations are corrected to recover the correct burning velocity. The thickening factor to resolve the
flame on a usual unstructured mesh is on the order of 20. This factor can be decreased slightly if naturally
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thicker quantities are used to represent the flame. This is the case in flame surface density approaches [2], but
the thickening factor remains large. Instead of transporting reacting scalars, the flame can also be described
using a flamelet hypothesis. That is, the reaction zone in the flame is considered to retain a laminar structure.
The problem is then reduced to finding the position of the thin reaction layer. This is the principle of the G-
equation model [3,4] in which a level set technique is used to track accurately the flame front. The displace-
ment velocity of the level set is usually given by a model based on asymptotic analysis or experimental corre-
lations [4,5]. Then, the level set has to be coupled with the Navier–Stokes solver by imposing the temperature
profile in the flame brush. Often, Navier–Stokes solvers are not able to deal with large density and momentum
gradients, and the imposed temperature profile has to be resolved on more than one cell, typically on the order
of five cells.

In all the described models, the flame brush is more or less thickened, and the interactions with the smallest
resolved scales are modified. The proposed method overcomes this artificial thickening using a numerical
method that better couples the level set technique and the Navier–Stokes solver. This method is based on
the ghost-fluid method (GFM) [6], which tracks discontinuities without introducing any smearing or numer-
ical instabilities. While the original GFM has been developed to track infinitely thin discontinuities, the pres-
ent method extends the GFM formalism to deal with interfaces of finite thickness.

2. A ghost-fluid method for thin flame brushes

2.1. The classical variable-density method for low-Mach number flows

In reacting flows, the density is not constant, and incompressible methods cannot be used. Taking the low-
Mach limit without the constant-density assumption, the filtered Navier–Stokes equations reduce to the con-
tinuity and momentum equations:

o�q
ot
þr � ð�q~uÞ ¼ 0; ð1Þ

o�q~u

ot
þr � ð�q~u~uÞ ¼ �rP þr � t; ð2Þ

where � and ~ denote the LES filtering and the mass weighted filtering, respectively. q is the density, u is the
velocity, P is the pressure and t is the total stress tensor. In (1) and (2), the density is usually given from the
combustion model. The pressure in (2) is not the thermodynamic pressure but rather a Lagrange multiplier
called dynamic pressure. Similar to incompressible flows, these equations can be solved using a fractional-step
method. A time-staggered discretization of (1) is given as:

�qnþ3=2 � �qnþ1=2

Dt
þr � ð�q~unþ1Þ ¼ 0: ð3Þ

If the density is known at tn + 1/2 and tn + 3/2, this equation provides a constraint on the velocity divergence. The
first step of the fractional-step method is to advance the momentum equation to:

�q~uH � �q~un

Dt
þr � ð�q~unþ1=2~unþ1=2Þ ¼ r � t: ð4Þ

In the second step, the momentum is corrected with the dynamic pressure gradient:

�q~unþ1 � �q~uH

Dt
¼ �rP nþ1=2: ð5Þ

The dynamic pressure P is found solving the variable-density Poisson equation:

r � rP nþ1=2 ¼ �qnþ3=2 � �qnþ1=2

Dt2
þ 1

Dt
r � ð�q~uHÞ: ð6Þ

Solving (4)–(6) for a propagating premixed flame may present several challenges. First, since the flame essen-
tially occurs on the sub-filter scale, the filtered velocity and momentum flux may have steep gradients, which
are difficult to integrate in the momentum equation. This may lead to spurious numerical instabilities. Second,
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